a24d923ac9929a22eed62d71dd5ae9ee.ppt
- Количество слайдов: 56
“Why is Flight so Safe? How Could it be Safer” -An Overview April 28, 2003 Kenneth A. Pickar J. Stanley Johnson Professor Visiting Professor of Mechanical Engineering California Institute of Technology pickar@caltech. edu www. its. caltech. edu/~kpickar
Subjects for today’s Lecture – Safety statistics – Equipment Design and Manufacturing Processes • • Design for Reliability Safety Equipment Redundancy Error management Risk and risk reduction Post mortum analysis for root cause(s) Testing – Regulation • Certification • Process • Management of “near misses” – Air traffic Control
Subjects for today’s Lecture – Environmental Issues • Weather • Icing – Maintainance – Cultural Factors • • Hierarchy Openness Conservatism Ethical Considerations – Future Improvements • Security • Congestion • Human control vs Automation assist
Accident Rates (Source Boeing Co. )
U. S. Aviation Accident Rates per 100, 000 Flight Hours Year General Aviation Total/Fatal Air Taxi Total/Fatal Airlines Total/Fatal Corporate/ Executive* Total/Fatal Business# Total/Fatal 1992 8. 36/1. 80 3. 86/1. 22 0. 146/0. 032 0. 210/0. 080 2. 17/0. 86 1993 8. 94/1. 74 4. 16/1. 15 0. 181/0. 008 0. 230/0. 070 2. 02/0. 52 1994 8. 96/1. 81 4. 58/1. 40 0. 168/0. 030 0. 180/0. 070 1. 81/0. 51 1995 7. 72/1. 55 4. 39/1. 41 0. 267/0. 022 0. 250/0. 110 2. 04/0. 67 1996 7. 09/1. 34 4. 44/1. 43 0. 276/0. 036 0. 140/0. 060 1. 71/0. 34 1997 7. 26/1. 39 2. 65/0. 48 0. 309/0. 025 0. 230/0. 060 1. 41/0. 39 1998 7. 47/1. 41 2. 08/0. 45 0. 297/0. 006 0. 091/0. 000 1. 14/0. 30 1999 6. 42/1. 15 2. 36/0. 36 0. 296/0. 011 0. 230/0. 130 1. 40/0. 40 2000 6. 32/1. 18 2. 25/0. 62 0. 311/0. 016 0. 125/0. 060 1. 28/0. 37 2001 6. 56/1. 22 2. 12/0. 53 0. 239/0. 036 0. 108/0. 031 1. 06/0. 23
Comparison of Travel Modes US Passenger Fatalities per million passenger miles YEAR Autos 1 Buses 2 Railroads 3 Airlines 4 U. S. PASSENGER FATALITIES PER 100 MILLION PASSENGER 1989 U. S. PASSENGER FATALITIES PER 100 MILLION PASSENGER 1. 12 0. 04 0. 06 0. 09 1990 0. 99 0. 04 0. 02 0. 003 1991 0. 04 0. 06 0. 03 0. 83 0. 04 0. 02 0. 01 1992 1993 0. 86 0. 02 0. 45 0. 01 1994 0. 91 0. 03 0. 04 0. 06 1995 0. 97 0. 03 0. 00 0. 04 1996 0. 02 0. 09 0. 08 0. 92 0. 01 0. 05 0. 01 1997 0. 86 0. 05 0. 03 0. 00 1998 1999 0. 83 0. 07 0. 10 0. 003 2000 0. 80 0. 01 0. 03 0. 02 10 -Yr. Avg. 0. 88 0. 03 0. 08 0. 02 http: //www. air-transport. org/public/industry/display 1. asp? nid=1036
Annual Airline Traffic Year Revenue Passenger Miles (X 1000) • • 1960 1970 1980 1990 2000 1, 200 4, 949 9, 369 17, 628 27, 431 One revenue passenger transported one mile in revenue service. Source: http: //www. bts. gov/publications/nts/html/table_air_carrier_profile. html
How did Air Transport become so reliable? • • Not an accident Full systems view of issue Engineering plus Culture Obvious causes have already been found (single point failures) • Accidents now occur through an “unlikely” chain of events • Improvements continue to be driven by the increase in passenger traffic (despite recent downturn) • Security now the hot button
• Equipment Design and Manufacturing Processes – Design for Reliability- In design process assure that entire system is robust against failure • • • Redundancy Error management Risk and risk reduction Post-mortum analysis for root cause(s) Testing
How do you make a very complex system reliable? • Redundancy • Test each component and then test entire system
Design for Reliability • Functional hazard assessment--identifies and categorizes conditions that might result in a system failing or other serious consequences to the airplane • Failure modes and effects analysis (FMEA)--systematically identifies system-and component-level failure modes and then looks at the effects on the design • Fault-tree analysis--assesses the likelihood and effects of combined failures within a given system • System separation and survivability analysis--assesses the ability of an airplane’s systems to survive damaging events and identifies changes to enhance the likelihood that the plane and passengers will survive an accident.
Failure Modes and Effects Analysis • FMEA - Failure Mode and Effects Analysis a pro-active engineering quality method that helps you to identify and counter weak points in the early conception phase of products and processes
FMEA Failure Modes and Effects Analysis Consider • Part • Function • Failure Mode • Cause • Result • Consequences • Severity • Probability • Minimization Approach
FMEA Root Cause Analysis
Fault Tree analysis Seal Regulator Valve Fails Open when commanded closed Excessive port leakage 6 Excessive case leakage 7 Regulates Low Fails closed when commanded open 2 or 1 Next Page Regulates High Excessive leakage 3 4 Fails to meet response time Excessive hysteresis or Fails to meet response time 8 5 Fails to meet response time 9
Reliable Manufacturing – In-process testing redo until right Build in Quality – Qualify product Qualify Process – Meet specifications Control Variations – Focus on Yield Focus on Defects (Six Sigma)
Aerospace manufacturing- effect on safety (compared with consumer products) Plusses • Very long product cycles (Enables learning) • Parts traceability • Certification process • • Minuses Extreme complexity Very low volumes (slow learning curve) Very narrow supply base (and shrinking) Tradition of high cost
Reliability as a function of System Complexity Why computers made of tubes cannot be made to work
Testing • • At component level beginning early Modularized software At Systems level HAST (Highly Accelerated Stress Testing to failure) • Cp, Cpk design • Physics-Based predictive failure – E. g. , Ultrasound probe for metal fatigue
Reliability Physics Bathtub Curve Failure Rate Infant #/million hours Mortality Useful life Replace Burn-in Time Wear out
Testing of the A 6 • “A number of ground tests were done to simulate long term effects on the aircraft. The most important of these tests was the fatigue failure. Although the test airframe developed (23 October 1975) a crack at about the 5, 000 hour point (80% of expected lifetime), an airframe strengthening modification was incorporated into the test assembly and testing was successfully completed to the expected lifetime point of 6, 000 hours” – Ref http: //www. wpafb. af. mil/museum/research/attack/a 6 -16. htm
Airframe reliability Messenger M. 38 2 A 6339 G-AIEK RG 333 Airworthy Bristol p/s England Built in December 1946; For sale in 1998
DC-3 Although the basic design of the aircraft is now almost 70 years old, hundreds of DC-3 s and C-47 s remain in military, commercial and private use worldwide http: //www. nzwarbirds. org. nz/dakota/history. html B 52 bombers will stay in service to their 90 th birthday (2040 s)
Aloha Airlines April 1988 “Pre-existing fatigue cracks in the fuselage from numerous takeoffs and landings”
Maintenance • Most profitable part of the business (“razor blade business”) • Some Issues – Counterfeiting and substitution of non-qualified parts – Short cuts/errors
Cockpit equipment designed to enhance safety • Black Boxes • CFIT (Controlled Flight into Terrain) and EGPWS (Enhanced Ground Proximity Warning System) • TCAS ( Collision Advoidance System) http: //www. egpws. com/general_information/videos/mov/mode 1. mov
Black Boxes Black boxes- To learn from accidents • Radio and acoustic beacons that aid in retrieval • Flight Data Recorder – Captures speed, heading, altitude, rate of climb or descent, accelerations, and decelerations. – Engine thrust and the position of control surfaces – Flight crew and autopilot control actions • Cockpit voice recorder: – All cockpit noises, including radio communications, flight crew announcements, and flight crew conversations.
Culture of pilots • • • Careful, methodical Apprenticeship Training Simulation Qualification Regulation
Influence of Culture The Influence Of Culture On Cockpit Communication • Regions with high accident rates also share similar cultural values, such as power distance — the inability of subordinates to question the actions of superiors and recommend alternative courses of action — and uncertainty avoidance, which emphasizes rigid adherence to rules and procedures that reduces the directness and bluntness of communication. Direct and rapid communication, though, is often essential if accidents are to be avoided or critical situations surmounted. James Schultz Quest January 2002 • Volume 5 Issue 1
Influence of Culture • Litigious American Culture – Finger pointing in accident inquiry • Engineering Culture – Fix the problem • Business Culture – Damage limitation
• A 380: ‘More Electric’ Aircraft Imagine the weight and complexity of an all-hydraulic flight control system on a 500 -to-600 -passenger aircraft. Airbus has thought of that possibility and turned, in part, to electrically powered actuators. By Charlotte Adams. For years engineers have dreamed of an all-electric aircraft. They have envisioned a concept called "power-by-wire, " in which electrical power moves aircraft flight surfaces. Gone would be the complex, heavy, maintenance-intensive, and (in combat) vulnerable hydraulic systems with their flammable liquids operating at high temperature and pressure. Gone, too, would be the miles of tubing, the pumps and valves. Weight could be shifted from plumbing to passengers, fuel or mission payloads. The transition to an all-electric aircraft is still many years in the future. But aircraft engineers have tested electrohydrostatic actuators (EHAs), which combine electrical and hydraulic power: hence the evolutionary "more electric aircraft" idea. EHAs are electrically powered but use small hydraulic pumps and reservoirs that transform electrical power into hydraulic power. Airbus has worked with EHA flight control technologies for more than a decade. A 320 and A 340 flight test beds have operated since 1993 -94 and 2000, respectively. The U. S. military’s Joint Strike Fighter and C-141 Electric Starlifter programs have tested EHA systems, as well. Airbus has baselined EHA flight controls for its coming super jumbo aircraft. A related concept baselined on the A 380 is variable-frequency (VF) power generation, which will enable the production of additional power more reliably, at lower maintenance cost, and for less weight, compared to current systems. Tackling a Big Job. The A 380’s sheer size seems to dictate a new approach to flight control technology. Its wingspan is about 262 feet (80 m)—nearly the size of a football field—and its length is slightly less, making the plane the largest conventionally configured aircraft ever built, Airbus says. The twin-deck fuselage is equivalent in size to an A 340 cabin atop a Boeing 747 cabin, according to Airbus. Although the A 380’s vertical and horizontal stabilizers were made "small, " relative to the overall aircraft size, to save weight, they are outsized compared to earlier Airbuses. The A 380’s vertical stabilizer has the area of an A 320 wing and the new airplane’s horizontal stabilizer is equivalent to a pair of A 310 wings. To move these huge surfaces hydraulically, only, was considered but was discarded in favor of a hydraulic-plus-electric flight control architecture. When Airbus began to work on the A 3 XX concept, as the A 380 was known four or five years ago, the company started with a baseline similar to the A 340, says Michel Comes, Airbus director of engineering systems for the A 380. (The A 340’s flight controls are powered by three hydraulic systems. ) But because there are more and larger control surfaces than in previous generations, the A 3 XX would have required much more hydraulic power—more tubes and fluid. This would have added weight and complexity, with hydraulic power generation and distribution elements. However, hydraulic power, which has been used for decades and is well understood, is the primary power source for A 380 flight control, says Dominique van den Bossche, Airbus department head for actuation and hydraulics. Among other considerations, the A 3 XX’s larger dimensions would have required the use of long, large-diameter hydraulic lines to minimize pressure loss, making them heavy and more difficult to install, says van den Bossche in a recent paper. And the aircraft’s larger engines would have made the routing of hydraulic lines in the fuselage more difficult. Triply Beneficial. The use of electrically powered actuators, however, allows designers to efficiently segregate power distribution channels and save weight, the Airbus paper adds. Increased hydraulic pressure in the remaining hydraulic circuits—from 3, 000 psi to 5, 000 psi—also saves weight. It reduces the size of components, generation equipment, tubing, and the amount of fluid required, and makes installation easier. Overall, the benefits are clear: improved reliability and maintainability; reduced weight and increased cost savings; and increased safety margin because of the use of dissimilar power sources. "Because of the dissimilar [flight control] architecture, if we lose hydraulic power, the aircraft does not lose any flight handling capabilities, " Comes explains. "There is no impact on the performance of the aircraft. "Electrohydrostatic actuation will generate large weight savings. "The combination of the higher hydraulic pressure and the ‘more electric’ flight control architecture led to a weight reduction of approximately [3, 307. 5 pounds] 1, 500 kg for the aircraft, " Comes explains. For variable-frequency power generation, "weight was not the driver, " he adds. That decision "was more oriented to reliability and maintenance cost. ""It’s clear that we are oriented more and more toward the ‘more electric aircraft, ’" Comes says. "We have worked more than 10 years on electrohydrostatic actuators to see whether we could have a more dissimilar architecture for flight control. " Airbus has defined a "two-plus-two" architecture, he explains. "The flight control actuation system is powered from four independent power sources—two hydraulic and two electrical circuits. These power sources are distributed on the actuator set. " Airbus is working on electrohydrostatic technology with TRW, Liebherr and Smiths Industries (formerly Dowty). An electrohydrostatic actuation award or awards had not been announced at press time. Airbus also has baselined variable-frequency (VF) electrical power generation. VF power generation allows designers to discard the complex, heavy and difficult-to-maintain equipment necessary to convert variable-speed mechanical power produced by the engines to constant-frequency electrical power traditionally used by aircraft systems. Recently, Airbus chose a joint venture of Thales and TRW Aeronautical Systems (formerly Lucas Aerospace) to provide the VF electrical power system for the A 380. Not surprisingly, because of its use of "more electric" flight controls and the cabin and galley power demands of this huge aircraft, the A 380 requires more electrical power than a comparably sized, hydraulically powered plane. Airbus plans to use four variable-frequency electrical power generators, each outputting 150 kilovolt amperes (k. VAs). The company anticipates a near-term requirement of 380 k. VAs in cruise, Comes says. Moving to variable-frequency power generation increases reliability, Comes says. "We don’t need the constant-speed drive, one of the main fragile parts of generators. " He expects power generation reliability to increase by about 50 percent. TRW pioneered variable-frequency technology on Bombardier’s Global Express business aircraft, which uses the company’s 40 -k. VA variable-frequency generators. TRW also has designed 90 -k. VA and 120 -k. VA generators and is developing a 150 -k. VA unit for the A 380. Variable-frequency power generation is new to large aircraft, says Klaus Fuchs, vice president of technology and engineering for TRW Aeronautical Systems. Power frequency, or cycle time, is constant for 80 to 90 percent of a flight but can vary from 400 to 800 Hz during takeoff and landing. EHAs have been designed to be compatible with VF, he says. TRW’s VF developers also wanted to ensure power quality. They adopted Mil-Std-704 E power quality standards for VF technology in order to reduce any impact on user equipment. They also developed advanced electromagnetic technology, high-speed electronic voltage regulation and system protection to maintain high-level power quality over the wide output range. VF technology increases overall power system reliability, reducing operating costs, Fuchs says. TRW estimates airlines will save up to $16 in operating cost per flight hour from the change in generator technology. The new variable-frequency generators also are designed to be cheaper than current systems. TRW also envisions the emergence, in 10 to 15 years, of distributed electronic engine controls. The company, for example, wants to introduce a "smart" electronic fuel metering unit. "The idea is to reduce weight and increase reliability, " Fuchs says. TRW sees the day when engine control will be distributed rather than centralized. "In the future, " Fuchs predicts, "each individual unit will have electronics built into it. " That will pave the way for the next step—to give engine units "smart diagnostics. " Distributed electronic controls will reduce the weight of engine control systems and allow superior engine monitoring and diagnostics. Such an engine control architecture will increase reliability, save weight and reduce costs, Fuchs predicts. "With a decentralized system, you don’t need the thousands of feet of wire [now attached to a central control box]. "You only need to link the local control computers [into a network] via a data bus. " A large civil aircraft engine with electronic controls could shed about 100 pounds (45 kg) through the simplification of wire harnesses, TRW claims. TRW already has demonstrated a three-node engine control system incorporating a "smart" fuel valve. The system features a two-channel electronic controller embedded in the fuel valve that takes fuel flow demand data from the data bus and correspondingly adjusts valve position. Smart engine control units, the company estimates, can isolate faults with "100 percent certainty" and save 20 to 30 percent of engine maintenance costs. The concept of decentralized control also can be extended to the flight control actuators, Fuchs says. With more electronics in the actuators, "you could predict how long an actuator will last. " Today airlines have to perform actuator maintenance checks "irrespective of whether the actuator could still fly for another 1, 000 hours, " he adds. Electric Engines? Further down the road, TRW hopes to replace fuel pumps, still driven by a mechanical gearbox, with an electrically driven pump, although this enhancement would still be classed in the "more electric" range. With additional changes to electrically powered components, however, the "all-electric" engine comes into view. This system could focus on producing thrust and predominantly electrical power. TRW has been working closely with Rolls Royce on "more electric" engines. Vulcan: A Revolutionary Forebear. The Royal Air Force’s famous delta-wing Vulcan bomber, a key nuclear deterrent at the height of the Cold War, employed electrohydraulic-powered flight controls in the 1950 s. The Avro factory in Woodford, Manchester, built 134 of the type from 1954 to 1962. Although nearly half a century has passed since then —and many generations of flight control equipment—the Vulcan is a revolutionary forebear of today’s electrohydrostatic actuator (EHA) technology. The Vulcan was one of the last British-designed and -manufactured large military aircraft, about the size of a Boeing 737. The Vulcan’s electrohydraulic powered flying control units (PFCUs) were designed in the early ’ 50 s by Boulton-Paul, which became part of Dowty Aerospace, now Smiths Aerospace, says Robert Pleming, director of the Vulcan Operating Co. Ltd. , an organization dedicated to returning XH 558, the RAF’s last Vulcan, to flight under civilian auspices. The Vulcan’s flight control system was primarily electrically powered. In addition to an airborne auxiliary power plant, each of the aircraft’s four engines had its own alternator. Each alternator could provide enough power for the PFCUs. This "massive redundancy" meant that "even if you lost multiple engines, you could still have all flight surfaces working, " Pleming says. "There are 10 PFCUs on the Vulcan, four on each wing for the eight elevons [elevators plus ailerons] , and two units (main and auxiliary) for the rudder, " Pleming explains. "Each PFCU consists of an electric motor driving main and servo hydraulic pumps and a hydraulic jack to move the control surface. " Movement of the cockpit controls operates the assembly, supplying hydraulic fluid to the appropriate side of the jack and moving the control surface. The PCFU includes a stoke limiter "to prevent excessively harsh movements of the control surface, " Pleming says, "and a lock valve to prevent the control surface from flapping in flight in the case of a hydraulic pressure failure. " A bleed valve "allows pressure in the jack to equalize slowly, allowing the control surface to trail to a no-load position in case of failure. "Although in Vulcan’s heyday, there was no such thing as a reliability database, the RAF flew the aircraft from 1957 to 1984, including action in the Falklands campaign. Given the elegant and powerful aircraft’s enduring popularity, the RAF continued to fly it in air shows until 1993, when the last of the type, a B 2 configuration that had entered service in 1960, was retired. A major reason the restoration project has gained wide support from the original manufacturer (now considered to be BAE Systems) is Vulcan’s "exemplary in-service safety record, the result of its highly redundant design, " Pleming says. The UK Civil Aviation Authority also strongly supports the project, he adds. The Vulcan Operating Co. hopes to return XH 558 to flight in 2002. Visit www. tvoc. co. uk. A 380 Flight Controls—Up Close. The Airbus A 380 has two elevators on each side of the horizontal stabilizer. Each elevator has one hydraulic and one electrohydrostatic actuator (EHA). There are two rudder surfaces, each of which uses two electrical backup hydraulic actuators (EBHAs). These add backup electrical power through a local electric motor and an associated hydraulic pump. EBHAs are hydraulically powered in the normal mode and electrically powered in backup mode. The tail’s trimmable horizontal stabilizer (THS) will be driven by a ball screw actuator powered by two hydraulic motors and a standby electric motor, explains Dominique van den Bossche, Airbus department head for actuation and hydraulics. Each elevator surface has dualredundant power sources, as the four independent sources are distributed across the control surfaces. Each rudder surface has quad-redundant power sources. The new aircraft features three ailerons per wing, each moved by two actuators. Inboard and median ailerons use one hydraulic and one EHA actuator, while the outboard ailerons use two hydraulic actuators. Spoilers (eight per wing) are hydraulically powered. Two or three of the spoiler actuators on each wing, however, will have backup electrical power, combining servocontrol and EHA functions in a single unit, the EBHA. Wing flaps and slats are driven by mechanical rotary actuators connected to powered control units (PCUs) by means of a torque shaft transmission system, van den Bossche says. The flap PCU includes two hydraulic motors; the slat PCU includes one hydraulic and one electric motor. Back to October 2001 Avionics News and Highlights. Information about Avionics Send your comments to the Avionics staff Ask the Experts| Home | Subscribe | Newsstand | Search | Special Reports | Aircraft Values | | Safety | Ask the Experts | Calendar | Industry Links | Forum | Career Center | | From the Wires | Media Kit | Catalog | About the Site | Helpdesk | Copyright © 2003 PBI Media, LLC. All rights reserved. Reproduction in whole or in part in any form or medium without express written permission of PBI Media, LLC is prohibited. http: //www. aviationtod ay. com/reports/avionic
Conservatism “Avoidance of new technologies, or the capabilities they make possible, unless they provide distinct safety, operational, or efficiency advantages and do not compromise existing safety. Advancements that fail this simple test simply do not fly aboard Boeing jetliners. Why? Because the ill-considered application of new technologies can lead to unintended consequences that compromise the safety already achieved. ” http: //www. boeing. com/commercial/safety/pf/pf_ manufacturers_role. html#four
FAA and Regulation • Strategic Goal: By 2007, – Reduce U. S. aviation fatal accident rates by 80 percent from 1996 levels. – Fatal Aircraft Accident Rate: By 2007, reduce the U. S. aviation fatal accident rate per aircraft departure. . . by 80 percent from the year average for 1994 -1996. • FY 2001 Performance Goals: • – Commercial Air Carrier Fatal Aircraft Rate. Reduce the fatal commercial aviation fatal accident rate per 100, 000 departures to 0. 043 by FY 2001.
What is Safer Skies About? • Disciplined, Focused Approach – Data driven – Analysis of past accidents/incidents – Identification of precursors – Specific interventions to address precursors – Use knowledge gained to identify future aviation system improvements – Safety plan a living document
FAA and regulation • Aviation Safety Reporting System (ASRS) – incident reporting system – Voluntary, confidential and anonymous • Accident/Incident Data System (AIDS) – NARRATIVE: ON CLIMB OUT FROM UTICA, NUMBER ONE CHANNEL OF THE AUTOPILOT FAILED. NUMBER TWO WAS ENGAGED AND PROGRAMMED FOR 160 KNOT CLIMB. DURING THIS CLIMB, THE AUTOPILOT CLIMBED AT A STEEPER ANGLE AND A SLOWER AIRSPEED THAN WHAT WAS PROGRAMMED. AND SHORTLY AFTER THIS, THE NUMBER TWO CHANNEL FAILED. WE ALSO EXPERIENCED ERRATIC FLIGHT DIRECTOR INFORMATION. THE FLIGHT CONTINUED FOR APPROXIMATELY 15 MINUTES WITHOUT THE USE OF ANY AUTOPILOT. WHEN A TURN TO THE RIGHT WAS ATTEMPTED, THE CONTROLS WERE JAMMED. BUT A TURN TO THE LEFT WAS POSSIBLE. IT WAS AT THIS TIME THE CREW ELECTED TO SEPARATE THE ROLL CONTROLS. IT WAS DISCOVERED THAT THE AILERON WERE JAMMED. THE AIRCRAFT WAS FULLY CONTROLLABLE WITH THE USE OF THE ROLL SPOILERS. IT WAS DECIDED TO FLY TO OUR MAINTENANCE BASE IN VFR CONDITIONS. LANDING WAS MADE AT MANASSAS WITHOUT INCIDENCE. MAINTENANCE PERSONNEL DETERMINED THAT THE ROLL SERVO ACTUATOR, HONEYWELL PART NUMBER 7002260 -923 HAD FAILED. THE COMPONENT WAS REPLACED AND THE AIRCRAFT RETURNED TO SERVICE. OPERATOR SUBMITTED MDR ON THIS EVENT
Safety Programs at FAA • International Aviation Safety Assessment (IASA) Enhanced Airplane Security Program Aviation Safety Action Program Air Transportation Oversight System (ATOS) Advanced Qualification Program Aviation Safety and Health Program Whistleblower Protection Program National Simulator Program Safe Flight 21/Capstone Certification, Standardization, Evaluation Team (CSET) Includes new entrant certification procedures)
A local resource Aviation Safety Program Management Aircraft Accident Investigation Helicopter Accident Investigation Gas Turbine Engine Accident Investigation Human Factors in Aviation Safety Management For Aviation Maintenance Accident/Incident Response Preparedness Legal Aspects of Aviation Safety The Role of the Technical Witness In Litigation Photography for Aircraft Accident Investigation System Safety Software Safety Incident Investigation and Analysis
EPGWS • http: //www. egpws. com/general_informatio n/videos. htm • http: //www. airlinesafety. com/
• THE TOP 10 AIRPORTS WHERE RUNWAY INCURSIONS OCCUR MOST FREQUENTLY (1997 TO 2000 DATA) • 1. Los Angeles (33) 2. St. Louis (30) 3. Orange County (27) 4. North Las Vegas (26) 5. Long Beach (25) 6. Dallas/Fort Worth (23) 7. San Francisco (21) 8. San Diego/Montgomery Field (20) 9. Fort Lauderdale Executive (20) 10. Phoenix (18) http: //airlinesafety. com/editorials/Runway. Incursions. htm
Performance Goals
Human Factors Primary contributor to more than 70 percent of all commercial airplane accidents. Far more likely cause of an airplane crash than mechanical failure or adverse weather conditions Error management tools Failure to follow procedures or improper use of equipment, includes procedural event analysis tool (PEAT) maintenance error detection aid(MEDA) Methodology to investigate errors, understand root causes and prevent accidents, rather than place blame on people for errors.
PEAT • Event Occurs • Investigation reveals procedure deviationassumes error is an “accident” • Interview Crew Members – – – Contributing Factors Ideas for Process Improvement Follow-up to obtain additional contributing factors Add to PEAT database Make process Improvements Provide feedback to all organizations affected • Similar process for maintainance
Environmental • Wind Shear- 7 th most common cause of fatal accidents in last 10 years – Ground based doppler radar – Pilot training on simulators – On board predictive and reactive systems
Ethical considerations in Engineering Design How much is a human life ‘worth”? “Society has a duty and responsibility to provide the best available medical care and treatment to try and save a human life. To do any less is to declare a death sentence in the name of cost effective treatment, corporate greed, budget balancing, or some other dollar associated reason. And that is morally and ethically corrupt, bankrupt, and wrong. ” http: //www. sambarpress. com/chuck/whatsa. htm
• • National Highway Traffic Safety Administration calculation of the value of a human life Ford Motor Company argues why certain safety measures are not "worth" the savings in human lives. Calculation of estimated societal cost every time someone is killed in a car accident. COMPONENT 1971 COSTS Future Productivity Losses Direct Indirect Medical Costs Hospital other Property Damage Insurance Administration Legal and Court Employer Losses Victim's Pain and Suffering Funeral Assets (Lost Consumption) Miscellaneous Accident Cost $132, 000 41, 300 700 425 1, 500 4, 700 3, 000 10, 000 900 5, 000 200 TOTAL PER FATALITY: $200, 725 http: //www. motherjones. com/mother_jones/SO 77/worth. html
Ethical considerations in Engineering Design And expensive. . . • Tort lawyers use these engineering numbers to set damages. • The fact that prices are put on human life is taken as proof of corporate callousness • Serve as the basis of punitive damages • Paradox: the higher the number, the higher the damages.
Consider the design of an air transport system. . . • Can an airplane be built that enables passengers to survive a crash?
But. . . • What if you could make a “safer vehicle” but it would increase the cost of the vehicle by 10 X and thus greatly increase the cost of a passenger ticket? • What if you could decrease the hijack probability to the level of El Al at the cost of significantly fewer flights and more check-in time
A Methodology • List all candidate safety improvement ideas • Calculate the increase in safety gained in terms of lives saved over the lifetime of the airplane • Rank order the improvements • Execute the improvements • When the savings become less than an agreedupon value (The “value of a human life”), stop • Repeat periodically • (example bombproof cargo containers)
Future safety enhancements Boeing Airplane-based GPS guided landings to replace present ground-base. New display technologies for flight decksintuitive graphic of descent profile and surrounding terrain. (EGPWS +? ) A "taxi display" for ground traffic around an aircraft Intelligent Pilot’s assistant to assist with complex procedures and heavy workload situations. Technologies to alleviate wake vortex and mitigate turbulence. "Synthetic vision" for better situational awareness with day-like visual Diagnostic systems to monitor all other systems for developing problems (jet net) http: //www. boeing. com/commercial/safety/pf/pf_manufacturers_role. html#four
Safety Enhancements -Honeywell Strengthening cockpit doors Explosion-resistant cargo containers and holds incorporating Spectra® fiber Maintaining cockpit audio links – with back up satellite links or VHF Air Traffic Control transponder system to alert controllers of an emergency situation when activated by the flight crew. Override systems that prevent unauthorized shutdown of critical aircraft systems, such as transponders, radios and flight recorders GPS-based system (in development) to continuously broadcast position Cabin Awareness and Warning System - video monitoring of cabin, capture on flight data recovery Improving flight data recovery – Delivery now is under way for dual, combination flight data-cockpit voice recorders, for all new commercial aircraft starting in January 2003 with retrofits required by January 2005. They double the likelihood that useable investigative data could be recovered in a worst-case scenario
Safety Enhancements -Honeywell Airport Security Monitoring key sites – Monitor potential security breaches at airports Tracking personnel –constantly track all tagged personnel and assets using a wireless system Integrating safety systems –
Recent “Future Considerations” Security (Gore Commission 1996) • New bomb detection equipment, • Background checks of ramp personnel • Certification of security personnel • Passenger profiling – Prohibitions on compiling profiles of potential terrorists – No generalizations permitted such as frequent travel to known terrorist countries – Limit profile records to information on known hijackers, terrorists • Bomb detection equipment remains problematic
Recent “Future Considerations” Security (Gore Commission 1996), continued Fault-checking airport/airline security systems using adversary testing Study of the chemical weapons threat (the subway attacks in Japan should serve as writing on the wall) Review viability of anti-missile defense systems. Mitigate the likelihood that terrorists could obtain or use surface-toair missiles. (Recommendation: The State Department should study the expansion of conventional arms agreements to include man-portable surface-to-air missiles, and the U. S. Representative to the International Civil Aviation Organization (ICAO) should propose a new convention addressing these weapons). Passenger/checked luggage match, initially based on profiling, to be implemented no later than December 31, 1997. Provide anti-terrorism airport security training at non-U. S. airports which serve airlines flying to the U. S.
Caltech-type improvements • Much better weather data, detection, and evasion • Redesign air traffic control system (freeflight? ) • Really-smart “Pilots Assistant” (situational awareness)- spin-off of military programs • Predictive failure of aerospace parts • Others. . .
• Lecture will be posted on www. its. caltech. edu/~kpickar