1236656c904079ab60016e81632ac018.ppt
- Количество слайдов: 115
What is Mobile Computing? Wireless Communication Systems Mobile Communication Systems Architecture Key Technologies of Mobile Computing Applications
HETEROGENEOUS WIRELESS COMMUNICATION WORLD DAB: Digital Audio Broadcast VHE: Virtual Home Environment DVB-T: Digital Video Broadcast Terrestrial UMTS: Universal Mobile Telecommunication System
WIRELESS NETWORKS Wireless communication networks IEEE 802. 11 IEEE 802. 15 IEEE 802. 16 IEEE 802. 20 Mobile communication networks GSM GPRS WCDMA HSPA+ LTE
IEEE 802. 11 IEEE 802. 15 IEEE 802. 16 IEEE 802. 20 Refers to a family of IEEE standards dealing with local area networks and metropolitan area networks The services and protocols specified in IEEE 802 map to the lower two layers Data Link Logical Link Control (LLC) Media Access Control (MAC) Physical
IEEE 802 STANDARDS
WWAN / WMAN / WLAN / WPAN
NOTE: NFC (NEAR FIELD COMMUNICATION) A short-range high frequency wireless communication technology which enables the exchange of data between devices over about a 10 centimetre (around 4 inches) distance The technology is a simple extension of the ISO/IEC 14443 proximity-card standard (contactless card, RFID) that combines the interface of a smartcard and a reader into a single device
An NFC device can communicate with both existing ISO/IEC 14443 smartcards and readers, as well as with other NFC devices, and is thereby compatible with existing contactless infrastructure already in use for public transportation and payment NFC technology is currently mainly aimed at being used with mobile phones
Three main use cases for NFC card emulation: the NFC device behaves like an existing contactless card reader mode: the NFC device is active and read a passive RFID tag, for example for interactive advertising P 2 P mode: two NFC devices are communicating together and exchanging information
Applications Mobile ticketing in public transport — an extension of the existing contactless infrastructure Mobile payment — the device acts as a debit/ credit payment card Smart poster — the mobile phone is used to read RFID tags on outdoor billboards in order to get info on the move Bluetooth pairing — pairing of Bluetooth devices with NFC bringing them close together and accepting the pairing
Other applications Electronic ticketing — airline tickets, concert/event tickets, and others Electronic money Travel cards Identity documents Mobile commerce Electronic keys — car keys, house/office keys, hotel room keys, etc. NFC can be used to configure and initiate other wireless network connections such as Bluetooth, Wi-Fi or Ultra-wideband
IEEE 802. 11 STANDARD AND AMENDMENTS IEEE 802. 11 - The WLAN standard was original 1 Mbit/s and 2 Mbit/s, 2. 4 GHz RF and infrared [IR] standard (1997), all the others listed below are Amendments to this standard, except for Recommended Practices 802. 11 F and 802. 11 T. IEEE 802. 11 a - 54 Mbit/s, 5 GHz standard (1999, shipping products in 2001) IEEE 802. 11 b - Enhancements to 802. 11 to support 5. 5 and 11 Mbit/s, 2. 4 GHz (1999) IEEE 802. 11 c — Bridge operation procedures; included in the IEEE 802. 1 D standard (2001) IEEE 802. 11 d - International (country-to-country) roaming extensions (2001) IEEE 802. 11 e - Enhancements: Qo. S, including packet bursting (2005) IEEE 802. 11 f - Inter-Access Point Protocol (2003) Withdrawn February 2006 IEEE 802. 11 IEEE 802. 15 IEEE 802. 16 IEEE 802. 20
IEEE 802. 11 g - 54 Mbit/s, 2. 4 GHz standard (backwards compatible with b) (2003) IEEE 802. 11 h - Spectrum Managed 802. 11 a (5 GHz) for European compatibility (2004) IEEE 802. 11 i - Enhanced security (2004) IEEE 802. 11 j - Extensions for Japan (2004) IEEE 802. 11 -2007 - A new release of the standard that includes amendments a, b, d, e, g, h, i & j. (July 2007) IEEE 802. 11 k - Radio resource measurement enhancements (2008) IEEE 802. 11 n - Higher throughput improvements using MIMO (multiple input, multiple output antennas) (September 2009) IEEE 802. 11 p - WAVE — Wireless Access for the Vehicular Environment (such as ambulances and passenger cars) (working — June 2010) IEEE 802. 11 r - Fast roaming Working "Task Group r" - (2008) IEEE 802. 11 s - Mesh Networking, Extended Service Set (ESS) (working — September 2010)
IEEE 802. 11 T — Wireless Performance Prediction (WPP) - test methods and metrics Recommendation cancelled IEEE 802. 11 u - Interworking with non-802 networks (for example, cellular) (working — September 2010) IEEE 802. 11 v - Wireless network management (working — June 2010) IEEE 802. 11 w - Protected Management Frames (September 2009) IEEE 802. 11 y - 3650 -3700 MHz Operation in the U. S. (2008) IEEE 802. 11 z - Extensions to Direct Link Setup (DLS) (August 2007 - December 2011) IEEE 802. 11 aa - Robust streaming of Audio Video Transport Streams (March 2008 - June 2011) IEEE 802. 11 mb — Maintenance of the standard. Expected to become 802. 11 -2011. (ongoing) IEEE 802. 11 ac - Very High Throughput < 6 GHz (September 2008 - December 2012) IEEE 802. 11 ad - Extremely High Throughput 60 GHz (December 2008 - December 2012)
IEEE 802. 11 / WI-FI [/ WAɪFAɪ/] ˈ Wireless Fidelity (無線相容性認證) A wireless-technology brand owned by the Wi-Fi alliance Promotes standards with the aim of improving the interoperability of wireless local area network products based on the IEEE 802. 11 standards
Common applications for Wi-Fi Internet and Vo. IP phone access, gaming network connectivity for consumer electronics such as televisions, DVD players, and digital cameras Wi-Fi Alliance a consortium of separate and independent companies agrees on a set of common interoperable products based on the family of IEEE 802. 11 standards
IEEE 802. 11 INFRASTRUCTURE MODE Uses fixed base stations (infrastructure) which are responsible for coordinating communication between the mobile hosts (nodes)
IEEE 802. 11 AD HOC MODE Mobile nodes communicate with each other through wireless medium without any fixed infrastructure
MOBILE AD HOC NETWORKS (MANET) Host moves frequently Topology changes frequently A B A No cellular infrastructure Multi-hop wireless links Data must be routed via intermediate nodes B
802. 11 /11 A/11 B/11 G/11 N
IEEE 802. 11 N Improve network throughput over 802. 11 a and 802. 11 g with a significant increase in the maximum raw data rate from 54 Mbit/s to 600 Mbit/s with the use of four spatial streams at a channel width of 40 MHz In spatial multiplexing a high rate signal is split into multiple lower rate streams each stream is transmitted from a different transmit antenna in the same frequency channel
802. 11 n uses MIMO (Multiple Input Multiple Output)
IEEE 802. 11 P ( VANET) – MOTIVATION Vehicular Ad hoc NETwork (VANET) Safety on US highways (2004) 42, 800 fatalities, 2. 8 million injuries ~$230. 6 billion cost to society Efficiency traffic jams waste time and fuel in 2003, US drivers lost a total of 3. 5 billion hours and 5. 7 billion gallons of fuel to traffic congestion Profit safety features and high-tech devices have become product differentiators
VANET-based Emergency Vehicle Warning System http: //www. youtube. com/watch? v=yqt. Lv. Zrz 2 q. E Ford's "Talking" Vehicles - Car-to-Car Communication Demo http: //www. youtube. com/watch? v=XBq. CAVw. Qv 0 E BMW Car-to-X Communication http: //www. youtube. com/watch? v=Jzgwl. Xz. O 6 v 0 Info. Fueling network http: //www. youtube. com/watch? v=Cc 19 mcnzvp. E * Ford Demonstrates Vehicle-to-Vehicle Communication for Increased Safety http: //www. youtube. com/watch? v=Rr. Cyl 6 p. OAC 0
WHAT IS VANET?
Components in a VANET Moving vehicles with On-Board Unit (OBU) Road Side Units (RSU) local broadcasting information IEEE 802. 11 access point RSU
ON-BOARD UNIT (OBU) Vehicle OBU Win. XP devices Windows mobile PDAs GPS tracker without user interface Text-based OBUs Pedestrian OBU GPS phone Personal tracker
SMART VEHICLE A modern vehicle is a network of sensors/actuators on wheels !
VANET ARCHITECTURE
DIFFERENCES BETWEEN VANET AND MANET VANETs Highly mobile nodes moving in the same or opposite directions MANETs Nodes move randomly Network shape can be best described by A square or torus shape either a one-dimensional line or a strip With location information and map Without location information Rely heavily on broadcast transmission to disseminate traffic related information to all reachable nodes (one to all & all to all) A query for a route to a certain host (one to one & one to all) Energy supported by car Energy supported by battery (Energy conservation) Emergency Non-emergency Topology changes frequently Topology changes slowly
VEHICLE COMMUNICATION (VC) VC promises safer roads
… more efficient driving
… more fun
VANET – APPLICATIONS Congestion detection Vehicle platooning Road conditions warning Collision alert Stoplight assistant Emergency vehicle warning Deceleration warning Toll collection Border clearance Adaptive cruise control Drive-through payment Merge assistance
A TAXONOMY OF VEHICULAR COMMUNICATION SYSTEMS
COMMUNICATION TYPES Roadside-to-Vehicle Communications (RVC) Inter-Vehicle Communications (IVC) Hybrid-Vehicle Communications (HVC) +
INTER-VEHICLE COMMUNICATION IVC) SYSTEMS ( • • Completely infrastructure-free Only onboard units (OBUs) are needed
IVC SYSTEMS • • SIVC (Single-hop Inter-Vehicle Communication) • applications of short-range communications • e. g. , lane merging, automatic cruise control MIVC (Multihop Inter-Vehicle Communication) • applications of long-range communications • e. g. , traffic monitoring (a) SIVC (b) MIVC
ROADSIDE-TO- EHICLE COMMUNICATION (RVC) SYSTEMS V • • Communication between roadside infrastructure (RSU) and OBU Two types of infrastructures • Sparse RVC (SRVC) system • Ubiquitous RVC (URVC) system
RVC SYSTEMS -SRVC • • Provide communication services at hot spots Examples • a busy intersection scheduling its traffic light • a gas station advertising its existence (and prices) • parking availability at an airport
RVC SYSTEMS -URVC • • Provide all roads with high-speed communication Require considerable investments for providing full (even significant) coverage of existing roadways
HYBRID VEHICULAR COMMUNICATION (HVC) SYSTEMS • • Extend the transmission range of RVC systems Vehicles communicate with roadside infrastructure even when they are not in direct wireless range by using other vehicles as mobile routers
HVC – ADV. & ISADV. D • • Advantage • less roadside infrastructure Disadvantage • network connectivity may not be guaranteed in scenarios with low vehicle density
VEHICULAR AD HOC NETWORK (VANET) Message propagates to destination using a number of intermediate links
If vehicle mobility causes links to break, message rerouted using a different path
CHALLENGES Physical layer limited bandwidth Link layer congestion control, latency, throughput, fairness and scalability Network (routing) layer rapid topology changes and network fragmentation
WAVE (IEEE 1609) / DSRC (802. 11 P)
WAVE (WIRELESS ACCESS IN VEHICULAR ENVIRONMENTS)
WAVE • • IEEE 1609 Mode of operation used by IEEE 802. 11 devices to operate in the DSRC band (5. 850 -5. 925 GHz) Defines • architecture • communications model • management structure • security and physical access Primary architecture components are OBU, RSU, and WAVE interface
VAVE Standard Components • • P 1609. 1 Resource Manager P 1609. 2 Security Services for Applications and Management Messages P 1609. 3 Networking Services P 1609. 4 Multi-Channel Operations
WAVE (IEEE 1609) / DSRC (802. 11 P)
DSRC (DEDICATED SHORT RANGE COMMUNICATIONS) • • • ASTM Standard E 2213 -03, based on IEEE 802. 11 a Name of the 5. 9 GHz Band allocated for the ITS communications 5. 855 -5. 925 GHz range • divided into 7 licensed channels (each 10 MHz) Short range radio • 300 m (1000 m max) High data rate • 6 -27 Mbps ASTM: American Society for Testing and Materia
• • Half-duplex • station can only send or transmit, but not both at the same time Latency • 200 μs Communication modes • vehicle to roadside & vehicle to vehicle DSRC devices • IEEE 802. 11 systems using the WAVE mode of operation in the DSRC band
IEEE 802. 11 p Basis • • Based on ASTM Standard E 2213 -03 IEEE 802. 11 a PHY: OFDM modulation IEEE 802. 11 MAC: CSMA/CA IEEE 802. 11 e MAC enhancement: message prioritization
IEEE 802. 11 P REQUIREMENTS • • • Longer ranges of operation (up to ~1000 meters) High speed vehicles (up to ~500 km/h) Extreme multipath environment (many reflections with long delays) Need multiple overlapping ad-hoc networks to operate with extremely high quality of service Support automotive applications (e. g. reliable broadcast)
IEEE 802. 11 P MULTI-CHANNEL • • Control Channel (CCH) • broadcast communication • dedicated to short, high-priority, data and management frames • safety-critical communication with low latencies • initialization of two-way communication on SCH Service Channel (SCH) • two-way communication between RSU and OBU or between OBUs • specific applications, e. g. tolling, internet access • different kinds of applications can be executed in parallel on different service channels
DSRC CHANNEL ALLOCATION 7 licensed channels (each 10 MHz)
DSRC CHANNEL ALLOCATION
DSRC
HOW DSRC WORKS? • • RSU • announces to OBUs 10 times per second the applications it supports OBU • listens on channel 172 • authenticates RSU digital signature • executes safety apps first • then, switches channels • executes non-safety apps • returns to channel 172 and listens
IEEE 1609. 4 EXTENSION FOR MULTI-CHANNEL COORDINATION
CHANNEL COORDINATION • • • Each Universal Time Coordinated (UTC) second is split into 10 Sync Intervals (each 100 ms) Every Sync Interval is composed of alternating • CCH Interval (50 ms): all WAVE devices have to monitor the CCH • SCH Interval (50 ms): nodes may switch to a SCH (RX or TX) Synchronization is performed via GPS
IEEE 802. 11 P MEDIA ACCESS CONTROL (MAC) • • • Based on Distributed Control Function (DCF) with CSMA/CA • if the channel is sensed busy before transmission the transmission is deferred for a random interval Basic access mode and RTS/CTS mode are used on SCH
DCF: BASIC ACCESS MODE • • A node transmits a DATA packet if it senses the channel to be idle The receiver • upon receiving an error-free packet, returns an ACK The sender • if the transmitting node does not get an ACK back, it enters into back-off and retransmits after the back-off period Basic access mode suffers from hidden node problem
HIDDEN NODE PROBLEM • • • A is sending to B C is ready to transmit to B • it does not detect carrier and thus begins transmission • this produces a collision at B C’s carrier sense did not provide the necessary information since station A was hidden from it A B C RTS/CTS solves the hidden terminal problem!
DCF: RTS/CTS MODE • When a node A wants to send a packet to node B, it initially sends a Request-to-Send (RTS) A
• Upon correctly receiving the RTS, node B responds with Clear-to-Send (CTS) B
• After receiving the CTS, node A sends the DATA packet to node B A B
• • If node B receives the DATA packet correctly, it sends an Acknowledgment (ACK) back to node A Any node that hears an RTS or a CTS is prohibited from transmitting any signal for a period that is encoded in the duration field of the received RTS or CTS
• • The duration fields in RTS and CTS are set such that nodes A and B will be able to complete their communication within the prohibited period (Network Allocation Vector, NAV) Finally, if a node does not get a response to an RTS or a DATA packet, it enters into an exponential backoff mode
The dark bars below node C and D indicates their NAV
BACKOFF INTERVAL • • • When channel is busy, choose a backoff interval in the range [0, cw] Count down the backoff interval when medium becomes idle Count down is suspended if medium becomes busy again When backoff interval reaches 0, transmit RTS Binary exponential backoff in 802. 11 DCF • when a node fails to receive CTS, cw is doubled up (up to an upper bound, cwmax) • when a data transfer completes successfully, cw is reset to cwmin
IEEE 802. 11 P MAC CHANNEL ACCESS
IEEE 802. 15 IEEE 802. 11 IEEE 802. 15 IEEE 802. 16 IEEE 802. 20 The 15 th working group of the IEEE 802 and specializes in Wireless PAN (Personal Area Network) standards IEEE 802. 15. 1 -2002 a Wireless PAN standard based on Bluetooth v 1. 1 specifications including a media access control and physical layer specification IEEE 802. 15. 1 -2005 based upon the additions incorporated into Bluetooth v 1. 2
the IEEE Study Group discontinues their relationship with the Bluetooth SIG (the later versions of Bluetooth will not become future IEEE standards) Bluetooth specifications Bluetooth 1. 0 and 1. 0 B Bluetooth 1. 1 Bluetooth 1. 2 (data rate: 1 Mbps) [not IEEE standard] Bluetooth 2. 0 + EDR (Extended Data Rate) Bluetooth 2. 1 + EDR (data rate: 3 Mbps) Bluetooth 3. 0 + HS (High Speed) (data rate: perhaps 24 Mbps) Bluetooth V 4. 0 (Ble; Bluetooth low energy) (data rate: perhaps 24 Mbps)
IEEE 802. 16 STANDARDS (WIMAX) IEEE 802. 11 IEEE 802. 15 IEEE 802. 16 IEEE 802. 20
802. 16 WIMAX (WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS,微波存取全球互通) Wireless. MAN A telecommunications technology aimed at providing wireless data over long distances in a variety of ways, from point-to-point links to full mobile cellular type access Enable the delivery of last mile wireless broadband access as an alternative to cable and DSL
INTEL WIMAX VISION 82
WIMAX FOR FIXED AND MOBILE ACCESS 83 CPE (Customer Premise Equipment):即客戶端/用戶端設備
WIMAX CONSUMER LAST MILE 84
WIMAX BACKHAUL FOR BUSINESS 85
WIMAX NOMADIC /PORTABLE 86
2008. 11. 13 HTC MAX 4 G 第一支GSM / WIMAX手機俄羅斯發表 88
IEEE 802. 16 OPERATION MODES /TOPOLOGIES Point to Multi. Point (PMP) / star topology Mesh mode / mesh topology Mobile Multihop Relay (MMR) / tree topology
IEEE 802. 16 ENTITIES 90 BS – Base Station central role in PMP mode coordination role in resource management connection/gateway point to other networks (backhaul, core IP, Internet) SS – Subscriber Station fixed station MS – mobile station MSS - Multiple Subscriber Station (playing role of an AP for LAN/WLAN) in-door or out-door RS – Relay station used in Mobile Multihop Relay (MMR)
802. 16 RELEVANT STANDARDS 91 802. 16 d (2004) basic fixed modestandard PMP / mesh modes, 70 Mbps 802. 16 e (2005) (Mobile Wi. MAX) lower data rate, 15 Mbps full nomadic and mobile use including handover enhancements to 802. 16 -2004 better support for Qo. S scalable OFDMA supports devices : mobile smart phones, PDAs, notebooks, laptops
93 802. 16 j Mobile Multihop Relay (MMR) enhance the normal PMP frame structure backward compatible with PMP mode new relay networking protocols multi-hop relay connections between SS/MS and BS coverage extensions throughput enhancement actually not mesh mode but tree topology
94 802. 16 m amendment for advanced air interface based on IEEE 802. 16 e-2005 expected data rates 100 Mbps for mobile applications 1 Gbps for fixed applications spectral efficiency, improve voice capacity, reduce latency support for location-based services improve multicast broadcast services
IEE 802. 16 RELEVANT STANDARDS EVOLUTION 95
MOBILE WIMAX (IEEE 802. 16 E) To enable low-cost mobile Internet applications To realize the convergence of mobile and fixed broadband access in a single air interface and network architecture 96
Mobile Wi. MAX enabling a variety of usage models in the same network
MOBILE WIMAX TECHNOLOGY AND NETWORK EVOLUTION ROADMAP
WIMAX NETWORK REFERENCE MODEL
WIMAX LOGICAL NETWORK ENTITIES Mobile Station (MS) generalized user equipment set providing wireless connectivity between a single or multiple hosts and the Wi. MAX network in this context the term MS is used more generically to refer to both mobile and fixed device terminals
Access Service Network (ASN) a complete set of network functions required to provide radio access to MS layer 2 (L 2) connectivity with the MS according to IEEE 802. 16 standards and Wi. MAX system profile transfer of authentication, authorization, and accounting (AAA) messages to the home network service provider (HNSP) preferred NSP discovery and selection relay functionality for establishing layer 3 (L 3) connectivity with MS (i. e. , IP address allocation) radio resource management to enable mobility, the ASN may also support ASN and CSN anchored mobility, paging and location management, and ASN -CSN tunneling
Base station (BS) primarily consists of radio related functions of an ASN interfacing with an MS over-the-air link according to MAC and PHY specifications ASN gateway (ASN-GW) an aggregation of centralized functions related to Qo. S, security, and mobility management for all the data connections served by its association with BSs through R 6 hosts functions related to IP layer interactions with CSN through R 3 interacts with other ASNs through R 4 in support of mobility
Connectivity Service Network (CSN) a set of network functions that provide IP connectivity services to Wi. MAX subscriber(s) the CSN may further comprises network elements such as routers, AAA proxy /servers, home agent, and user databases as well as interworking gateways or enhanced network servers to support multicast and broadcast services and location-based services
key functions IP address management AAA proxy or server Qo. S policy and admission control based on user subscription profiles ASN-CSN tunneling support subscriber billing and interoperator settlement inter-CSN tunneling for roaming CSN-anchored inter-ASN mobility connectivity to Internet and managed Wi. MAX services such as IP multimedia services (IMS), location-based services, peer-to-peer services, and broadcast and multicast services over-the-air activation and provisioning of Wi. MAX devices
WIMAX REFERENCE POINTS R 1:SS/MS與ASN間的實體空氣介面 上的通訊協定,為 802. 16 e所定義 R 2:SS/MS與CSN間的通訊協定與程 序,用以認證、授權服務和IP設定管 理,此為邏輯路徑 R 3:ASN與CSN間的流程協定,支援 AAA決策和行動管理能力 R 4:不同ASN間的協定,負責行動管 理,包含控制和乘載資料 R 5:不同CSN間互連的協定,包含 AAA、Billing之資料交換 R 6:BS與ASN間的協定,包含控制和 乘載資料協定的流程,負責溝通BS與 ASN閘道器的路徑 R 8:不同BS間的協定,確保快速換手, 可允許基地台間資料流暫時的流通 105
WIMAX NETWORK USES IP BASED SIMPLE PROTOCOL STRUCTURE SS/MS CSN ASN BS ASN-GW
MAC / PHY PROTOCOL STRUCTURE IN MOBILE WIMAX RELEASE 1. 0
WIMAX MAC LAYER (IEEE STD. 802. 16 -2004)
Service Specific Convergence Sublayer (CS) 提供外部網路與MAC之間的對映 MAC層可透過CS的服務存取點(Service Access Point,SAP)接收外部網 路的資料 在IEEE 802. 16 -2004中,進入每個sub-layer但尚未處理的資料稱為服務資料單 元(SDU),而經過該sub-layer處理後形成特定格式的資料則稱為協定資料單 元(PDU) Common Part Sublayer (CPS) CPS是MAC層的核心部份,包括媒體存取控制、頻寛分配、連線建立和維 護都是由這個sublayer負責 CPS通過MAC SAP接收來自各種CS層的資料並對接收的資料實施Qo. S控制 若無特別說明,一般所說的802. 16 MAC層就是指MAC CPS Security Sublayer (SS) 提供認證、安全的Key交換和加/解密功能
WIMAX NETWORK ARCHITECTURE AND EVOLUTION (RELEASE 1. 0) ASN and CSN mobility (for mobility support) Paging and location management IPv 4 and IPv 6 connectivity Preprovisioned/static Qo. S Optional radio resource management (RRM) Network discovery/selection IP/Ethernet CS support Flexible credentials, pre- and postpaid accounting Roaming (RADIUS only) 3 GPP I-WLAN compatible interworking 110
WIMAX NETWORK ARCHITECTURE AND EVOLUTION (RELEASE 1. 5) 111 Over-the-air (OTA) activation and provisioning Location-based services (LBS) Multicast broadcast service (MBS) IMS integration Dynamic Qo. S and policy and charging (PCC) compatible with 3 GPP Release 7 Telephony Vo. IP with emergency call services and lawful interception Full NAP sharing support Handover data integrity Multihost support Ethernet services, VLAN Enhanced open Internet services Diameter-based AAA
WIMAX NETWORK ARCHITECTURE AND EVOLUTION (RELEASE 2. 0) Multimedia 112 session continuity 3 GPP/2 interworking (optimized handover ) Network management, including selforganized /optimized networks (SONs) Seamless Wi. Fi-Wi. MAX handover Roaming enhancements Support for multihop relay stations Support for femto-cells Device reported metrics
802. 20 MBWA (MOBILE BROADBAND WIRELESS ACCESS) IEEE 802. 11 IEEE 802. 15 IEEE 802. 16 IEEE 802. 20 or Mobile Broadband Wireless Access (MBWA) an IEEE Standard to enable worldwide deployment of multi-vendor interoperable mobile broadband wireless access networks a packet-based air interface designed for IP-based services low-cost, always-on, and mobile broadband wireless networks, nicknamed as Mobile-Fi the goals of 802. 20 and 802. 16 e, the so-called "mobile Wi. MAX", are similar
Technical description IP roaming & handoff (more than 1 Mbps) new MAC and PHY with IP and adaptive antennas optimized for full mobility up to vehicular speeds of 250 km/h operates in licensed bands (below 3. 5 GHz) utilizes packet architecture low latency
WWAN / WMAN / WLAN / WPAN
1236656c904079ab60016e81632ac018.ppt