Вирусы.pptx
- Количество слайдов: 20
Вирусы Выполнила: Заваринская Екатерина Группа 1 ОКДД
Ви рус(лат. virus — «яд» ) — неклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток. Вирусы поражают все типы организмов, от растений и животных до бактерий и архей(вирусы бактерий обычно называютбактеорофагами). Обнаружены также вирусы, поражающие другие вирусы (вирусы – саттелиты) Со времени публикации в 1892 году статьи Дмитрия Ивановского, описывающей небактериальный патоген растений табака, и открытия в 1898 году Мартином вируса табачной мозаики были детально описаны более 5 тысяч видов вирусов, хотя предполагают, что их существуют миллионы. Вирусы обнаружены почти в каждой экосистеме на. Земле, являясь самой многочисленной биологической формой. Изучением вирусов занимается наука вирусология, раздел микробиологии.
Вирусы распространяются многими способами: вирусы растений часто передаются от растения к растению насекомыми, питающимися растительными соками, к примеру, тлями; вирусы животных могут распространяться кровососущими насекомыми, такие организмы известны как переносчики. Вирус гриппа распространяется воздушнокапельным путём при кашле и чихании. Норовирус и ротавирус, обычно вызывающие вирусные гастроэнтериты, передаются фекально-оральным путём при контакте с заражённой пищей или водой. ВИЧ является одним из нескольких вирусов, передающихся половым путём и при переливании заражённой крови. Каждый вирус имеет определённую специфичность к хозяевам, определяющуюся типами клеток, которые он может инфицировать. Круг хозяев может быть узок или, если вирус поражает многие виды, широк.
У животных вирусные инфекции вызывают иммунный ответ, который чаще всего приводит к уничтожению болезнетворного вируса. Иммунный ответ также можно вызвать вакцинами, дающими активный приобретённый иммунитет против конкретной вирусной инфекции. Однако некоторым вирусам, в том числе и возбудителям СПИДа и вирусных гепатитов, удаётся ускользнуть от иммунного ответа, вызывая хроническую болезнь. Антибиотики не действуют на вирусы, однако было разработано несколько противовирусных препаратов.
Слово «вирус» образовано от лат. virus — «яд» . Для обозначения агента, способного вызывать инфекционную болезнь, оно впервые было применено в 1728 году до открытия вирусов Дмитрием Ивановским в 1892 году. Множественное число — «вирусы» . Прилагательное «вирусный» начало употребляться с 1948 года. Термин «вирион» (множественное число — «вирионы» ), создание которого датируется 1959 годом, применяется для обозначения единичной стабильной вирусной частицы, покинувшей клетку и полностью способной инфицировать другие клетки того же типа.
Существует три основные гипотезы происхождения вирусов: регрессивная гипотеза; гипотеза клеточного происхождения; гипотеза коэволюции.
Регрессивная гипотеза Согласно этой гипотезе, вирусы когда-то были мелкими клетками, паразитирующими в более крупных клетках. С течением времени эти клетки предположительно утратили гены, которые были «лишними» при паразитическом образе жизни. Эта гипотеза основывается на наблюдении, что некоторые бактерии, а именно риккетсии и хламидии, представляют собой клеточные организмы, которые, тем не менее, подобно вирусам могут размножаться только внутри другой клетки. Эту гипотезу также называют гипотезой дегенерации илигипотезой редукции.
Гипотеза клеточного происхождения Некоторые вирусы могли появиться из фрагментов ДНК или РНК, которые «высвободились» из генома более крупного организма. Такие фрагменты могут происходить от плазмид (молекул ДНК, способных передаваться от клетки к клетке) или от транспозонов (молекул ДНК, реплицирующихся и перемещающихся с места на место внутри генома). Транспозоны, которые раньше называли «прыгающими генами» , являются примерами мобильных генетических элементов, возможно, от них могли произойти некоторые вирусы. Транспозоны были открыты Барбарой Мак-Клинток в 1950 году в кукурузе. Эту гипотезу также называют гипотезой кочевания или гипотезой побега.
Гипотеза коэволюции Эта гипотеза предполагает, что вирусы возникли из сложных комплексов белков и нуклеиновых кислот в то же время, что и первые на Земле живые клетки, и зависят от клеточной жизни вот уже миллиарды лет. Помимо вирусов, существуют и другие неклеточные формы жизни. Например, вироиды — это молекулы РНК, которые не рассматриваются как вирусы, потому что у них нет белковой оболочки. Тем не менее, ряд характеристик сближает их с некоторыми вирусами, а потому их относят к субвирусным частицам. Вироиды являются важными патогенами растений. Они не кодируют собственные белки, однако взаимодействуют с клеткой-хозяином и используют её для осуществления репликации своей РНК. Вирус гепатита D имеет РНК-геном, схожий с геномом вироидов, однако сам не способен синтезировать белок оболочки. Для формирования вирусных частиц он использует белок капсида вируса гепатита B и может размножаться только в клетках, заражённых этим вирусом. Таким образом, вирус гепатита D является дефектным вирусом. Вирофаг спутник схожим образом зависит от мимивируса, поражающего простейшее Acanthamoeba castellanii. Эти вирусы зависят от присутствия в клетке-хозяине другого вируса и называются вирусами-сателлитами. Подобные вирусы демонстрируют, как может выглядеть промежуточное звено между вирусами и вироидами.
Действие на клетки Микрофотография, показывающая цитопатические эффекты, вызванные вирусом простого герпеса первого типа. Тест Папаниколау Диапазон структурных и биохимических эффектов, оказываемых вирусом на инфицированную клетку, очень широк. Они называются цитопатическими эффектами. Большинство вирусных инфекций приводят к гибели клеток-хозяев. Причинами гибели могут быть лизис клетки, изменения клеточной мембраны и апоптоз. Часто причиной гибели клетки является подавление её нормальной активности белками вируса, не все из которых входят в состав вирусной частицы. Некоторые вирусы не вызывают никаких видимых изменений в поражённой клетке. Клетки, в которых вирус находится в латентном состоянии и неактивен, имеют мало признаков инфекции и нормально функционируют. Это является причиной хронических инфекций, и вирус при них может никак себя не проявлять многие месяцы или годы. Так часто бывает, например, с вирусом герпеса. Некоторые вирусы, например вирус Эпштейна-Барр, могут вызывать быстрое размножение клеток без появления злокачественности в то время как другие, такие как папилломавирусы, могут вызвать рак.
Вирусы могут вызывать рак у человека и других видов, хотя он возникает лишь у небольшой части инфицированных. Раковые вирусы относятся к различным семействам; они включают и РНК-, и ДНК-содержащие вирусы, поэтому единого типа «онковирус» не существует (устаревший термин, первоначально применявшийся для быстро трансформирующихся ретровирусов). Развитие рака определяется множеством факторов, такими как иммунитет хозяина и его мутации. К вирусам, способным вызывать рак у человека, относят некоторых представителей папилломавируса человека, вируса гепатита B и C, вируса Эпштейна-Барр, герпесвируса саркомы Капоши и человеческого Tлимфотропного вируса. Совсем недавно открытым вирусом рака человека является полиомавирус (полиомавирус клеток Меркеля), который в большинстве случаев вызывает редкую форму рака кожи, называемого карциномой клеток Меркеля. Вирусы гепатита могут вызвать хроническую вирусную инфекцию, которая приводит к раку печени. Заражение человеческим T-лимфотрофным вирусом может привести к тропическому спастическому параперезу и зрелой лейкемии Т-клеток. Человеческие папилломавирусы могут вызывать рак шейки матки, кожи, ануса и полового члена. Из герпесвирусов герпесвирус саркомы Капоши вызывает саркому Капоши и лимфому полости тела, вирус Эпштейна-Барр — лимфому Беркитта, лимфогранулематоз, нарушения B-лимфопролиферации и назофарингеальную карциному. Полиомавирус клеток Меркеля близок к вирусу SV 40 и полиомавирусам мышей, которые более 50 лет использовались как животные модели для изучения вирусного рака.
Вирусы беспозвоночных На долю беспозвоночных приходится около 80 % всех известных видов животных, поэтому нет ничего удивительного в том, что они скрывают в себе огромное множество вирусов различных типов. Наиболее изучены вирусы, поражающие насекомых, но даже здесь доступная по ним информация носит фрагментарный характер. Впрочем, в последнее время были описаны вирусные заболевания и у других беспозвоночных. Эти вирусы остаются малоизученными, и некоторые сообщения об открытии следует принимать с осторожностью, пока вирусная природа этих болезней.
Вирусы растений Перцы поражённые вирусом пятнистости Существует много типов вирусов растений, но чаще всего они вызывают только снижение урожайности, и пытаться контролировать их экономически невыгодно. Вирусы растений часто распространяются от растения к растению организмами, известными как переносчики. Обычно ими выступают насекомые, но ими могут быть также грибы, черви-нематоды и одноклеточные организмы. Если контроль вируса растений признаётся экономически выгодным, например, в случае многолетних фруктовых деревьев, усилия направляются на устранение переносчиков или альтернативных хозяев, к примеру, сорняков. Вирусы растений не могут поражать человека и других животных, так как они могут размножаться лишь в живых растительных клетках.
Вирусы грибов называются миковирусами. В настоящий момент вирусы выделены у 73 видов из 57 родов, относящихся к 5 классам, но, предположительно, в безвредном состоянии вирусы существуют у большинства грибов. В общем эти вирусы представляют собой круглые частицы 30— 45 нм диаметром, состоящие из множества субъединиц единственного белка, сложенных вокруг генома, представленного двуцепочечной РНК. Как правило, вирусы грибов относительно безвредны. Некоторые грибные штаммы могут поражаться многими вирусами, но большинство миковирусов тесно связаны со своим единственным хозяином, от которого передаются его потомкам. Классификацией вирусов грибов сейчас занимается специально созданный комитет в составе ICTV. В данный момент он признаёт 3 семейства вирусов грибов, а наиболее изученные миковирусы относятся к семейству Totiviridae
Вирусы бактерий Электронная микрофотография множества бактериофагов, прикрепившихся к бактериальной клеточной стенке Бактериофаги представляют собой широко распространённую и разнообразную группу вирусов, достигающую большей численности в водных средах обитания — в океанах этих вирусов более чем в 10 раз больше, чем бактерий, достигая численности в 250 млн. вирусов на миллилитр морской воды. Эти вирусы поражают специфичные для каждой группы бактерии, связываясь с клеточными рецепторами на поверхности клетки и затем проникая внутрь её. В течение короткого промежутка времени (иногда считанных минут) бактериальная полимераза начинает транслировать вирусную м. РНК в белки. Эти белки или входят в состав вирионов, собираемых внутри клетки, или являются вспомогательными белками, помогающими сборке новых вирионов, или вызывают лизис клетки. Вирусные ферменты вызывают разрушение клеточной мембраны, и, в случае фага Т 4, всего лишь через 20 минут после проникновения в клетку на свет появляются свыше трёх сотен бактериофагов.
Вирусы архей Sulfolobus, поражённый ДНК-вирусом STSV 1. Длина отрезка — 1 мкм Некоторые вирусы размножаются внутри архей: это двуцепочечные ДНКсодержащие вирусы с необычной, подчас уникальной формой. Наиболее детально они изучены у термофильных архей, в частности, порядков Sulfolobales и Thermoproteales. Мерами защиты против этих вирусов могут быть РНКинтерференция от повторяющихся последовательностей ДНК в геномах архей, родственных генам вирусов.
Вирусы вирусов При изучении вирусных фабрик мамавируса было обнаружено, что на них собираются небольшие вирионы и другого вируса, который был назван спутником (англ. Sputnik) Спутник, по всей видимости, сам не способен заражать клетки амёб (которые служат хозяевами мамавируса) и размножаться в них, но может делать это совместно с мама- или мимивирусом, что классифицирует его как вирус-сателлит. Спутник стал первым известным вирусом-сателлитом, содержащим двухцепочечную ДНК и размножающимся в эукариотических клетках. Однако авторы работы предлагают рассматривать спутник не просто как сателлит, а как вирофаг (вируса) по аналогии с бактериофагами(вирусами бактерий). Разница этих понятий в том, что вирусысаттелиты полагаются на другой вирус и клетку-хозяина для своего размножения. Вирофаги же, как предполагается, воспроизводятся только за счёт репликативного аппарата вируса-хозяина, то есть являются паразитами исключительно другого вируса. Хотя строгого доказательства ещё нет, некоторые факты говорят в пользу того, что спутник действительно является вирофагом. Например, в его геноме присутствуют регуляторные элементы, характерные для мимивируса и узнаваемые его транскрипционным аппаратом (последовательности, близкие к позднему промотору мимивируса, сигналы полиаденилирования). Кроме того, присутствие спутника снижает продуктивность размножения мимивируса: лизис клетки-хозяина происходит позже, образуются дефектные вирионы. На сегодняшний день был открыт второй вирофаг мимивируса штамма CL.
Искусственные вирусы Многие вирусы могут быть получены de novo, то есть с нуля, а первый искусственный вирус был получен в 2002 году. Несмотря на некоторые неправильные трактовки, при этом синтезируется не сам вирус как таковой, а его геномная ДНК (в случае ДНКвирусов) иликомплементарная копия ДНК его генома (в случае РНК-вирусов). У вирусов многих семейств искусственная ДНК или РНК (последняя получается путём обратной транскрипции синтетической комплементарной ДНК), будучи введённой в клетку, проявляет инфекционные свойства. Иными словами, они содержат всю необходимую информацию для образования новых вирусов. Эту технологию в настоящее время используют для разработки вакцин нового типа. Возможность создавать искусственные вирусы имеет далеко идущие последствия, поскольку вирус не может вымереть, пока известна его геномная последовательность и имеются чувствительные к нему клетки. В наши дни полные геномные последовательности 2408 различных вирусов (в том числе оспы) находятся в публичном доступе в онлайн-базе данных, поддерживаемой Национальными институтами здравоохранения США.
Вирусы как оружие Способность вирусов вызывать опустошительные эпидемии среди людей порождает беспокойство, что вирусы могут использоваться как биологическое оружие. Дополнительные опасения вызвало успешное воссоздание вредоносного вируса испанского гриппа в лаборатории. Другим примером может служить вирус оспы. Он на всём протяжении истории опустошал множество стран вплоть до его окончательного искоренения. Официально образцы вируса оспы хранятся лишь в двух местах в мире — в двух лабораториях в России и США. Опасения, что он может быть использован как оружие, не совсем беспочвенны; вакцина против оспы иногда имеет тяжёлые побочные эффекты — в последние годы до официально объявленного искоренения вируса больше людей серьёзно заболели из-за вакцины, чем от вируса, поэтому вакцинация против оспы больше не практикуется повсеместно. По этой причине большая часть современного населения Земли практически не имеет устойчивости к оспе.
Литература Букринская А. Г. Вирусология. — М. : Медицина, 1986. — 336 с. Mayo M. A. , Pringle C. R. Virus taxonomy — 1997 // Journal of General Virology. — 1998. — № 79. — С. 649— 657. Collier, Leslie; Balows, Albert; Sussman, Max. Topley and Wilson’s Microbiology and Microbial Infections / Mahy, Brian and Collier, Leslie. Arnold. — ninth edition. — Virology, 1998. — Т. 1. — ISBN 0 -340 -66316 -2 Dimmock, N. J. ; Easton, Andrew J. ; Leppard, Keith. Introduction to Modern Virology. — sixth edition. — Blackwell Publishing, 2007. — ISBN 1 -4051 -3645 -6 Knipe, David M. ; Howley, Peter M. ; Griffin, Diane E. ; Lamb, Robert A. ; Martin, Malcolm A. ; Roizman, Bernard; Straus Stephen E. Fields Virology. — Lippincott Williams & Wilkins. , 2007. — ISBN 0 -7817 -6060 -7 Shors, Teri. Understanding Viruses. — Jones and Bartlett Publishers, 2008. — ISBN 0 -7637 -2932 -9