
физ-хим .pptx
- Количество слайдов: 11
Умягчение воды методом Доннана.
Умягчение воды методом натрий-катионирования В практике водоподготовки метод ионного обмена, в частности, натрий-катионирование, успешно используется для умягчения воды, т. е. удаления из нее катионов кальция Ca 2+ и магния Mg 2+. Он получил широкое распространение благодаря высокой эффективности и скорости фильтрации, доступности реагента для регенерации. Источник
Среди множества способов борьбы с накипью, при которых используют термический, реагентный методы, метод ионного обмена, диализ, магнитная обработка или их комбинации, наиболее распространенным в настоящее время является замещение ионов Ca 2+ и Mg 2+ на безвредные Na+ и H+, получивший название натрийкатионирования. В основе метода лежит способность фильтрующего материала ионита забирать из воды определенные ионы в обмен на эквивалентное количество собственных противо ионов. Ионообменная смола состоит из зерен, в состав которых входят функциональные группы (матрицы), удерживающие катионы с более низкой динамической активностью, чем ионы, предполагаемые к удалению из раствора электролита (воды). При попадании в раствор частицы ионита впитывают воду и разбухают, приходя в рабочее состояние. Процесс ионного обмена протекает вследствие разности концентраций воды внутри и снаружи зерна смолы, которое в данном случае выступает в качестве мембраны.
Из всего объема химических элементов и соединений, проникающих в зерно, задерживаются в нем только те, которые смогли вступить в прочную связь с функциональной группой. Этим и объясняется многообразие вариантов фильтрационной загрузки и ее специализация, т. е. эффективность использования по отношению к тем или иным примесям.
На рис. 1 показан ряд активности некоторых металлов и соединений, участвующих в процессе ионного обмена. Поскольку натрий обладает наименьшими показателями, именно он обычно входит в состав функциональной группы катионита, используемого для умягчения воды. Ионы диффундируют через мембрану до тех пор, пока не установится электрохимическое равновесие. После чего начинается фаза т. н. «проскока» в фильтрат катионов жесткости. Данная стадия продолжается до момента уравнивания жесткости фильтрата с жесткостью исходной воды. На наружной поверхности омываемой частицы ионообменной смолы в процессе фильтрации образуется тонкая водяная пленка.
Скорость диффузии зависит, в свою очередь, от нескольких факторов : 1. Структура зерна Важную роль в ионообменном процессе играет отношение площади обменной поверхности к размеру зерна. В компактных частицах ионный обмен протекает на поверхности (экстрамицеллярный обмен), что повышает скорость фильтрации, но ограничивает площадь обменной поверхности. В частицах с развитой структурой и диаметром пор, превышающим размер гидратированных катионов, ионный обмен происходит как на внешней, так и на внутренней поверхностях (интермицеллярный обмен). Это замедляет фильтрацию, зато позволяет обойтись меньшим количеством катионата за счет более полноценного использования. В зависимости от размера пор выделяют следующие виды катионитов: изопористые (смола с однородной структурой), макропористые (представляют собой губчатую структуру с диаметром пор, превышающим молекулярный размер) и гетеропористые (это гелевидная структура с небольшими порами). Оптимальным размером принято считать размеры зерен 0, 3– 1, 5 мм
2. Химический состав зерна. Ассимиляция различных катионов из электролита функциональной группой ионообменной смолы зависит от фракционного состава загрузки. Катиониты подразделяются на минеральные и органические, которые, в свою очередь, могут иметь естественное или искусственное происхождение. Матрица может содержать амины, оксиды, гидроксиды, карбонаты, силикаты; сульфатные, фосфорные, фенольные, карбоксильные группы; природные минералы и другие соединения. Ионообменная смола состоит из однотипных (монофункциональные) или различных (полифункциональные) матриц. Подвижные заряды групп могут иметь как положительный, так и отрицательный заряд. В первом случае смола обладает катионообенными свойствами, во втором — анионообменными
3. Температура исходного раствора. С одной стороны, повышение температуры обрабатываемой воды способствует снижению ее вязкости, что улучшает кинетику ионообмена. С другой стороны, нагрев в сочетании с высокой щелочностью или кислотностью может приводить к пептизации (превращении в коллоидный раствор) катионита, в результате чего он теряет способность к ионному обмену. Универсальной рекомендацией в данном случае может служить соблюдение предписаний, касающихся диапазонов температуры и p. H фильтруемой среды, поскольку для каждого материала они могут значительно различаться
4. Содержание механических примесей. Взвешенные частницы, содержащиеся в фильтруемой воде, могут загрязнять и блокировать диффузные пути зерен ионита, снижая его фильтрующую способность. Это накладывает определенные ограничения на качество исходной воды: содержание взвеси не может превышать 8 мг/л, а цветность — 30 °. Поэтому в системе водоподготовки ступень умягчения ставят после механической фильтрации. 5. Скорость протока. Толщина обволакивающей частицу ионита водяной пленки тем тоньше, чем выше скорость протока. А она, в свою очередь, связана с давлением воды на входе, а также размером зерен смолы