Скачать презентацию TRIX Trapped Radium Ion e Xperiments Oscar Versolato Скачать презентацию TRIX Trapped Radium Ion e Xperiments Oscar Versolato

da26ef8b6bf7a8b448908111d7c0bd8a.ppt

  • Количество слайдов: 29

TRIX: Trapped Radium Ion e. Xperiments Oscar Versolato TRIm. P: Trapped Radioactive Isotopes: micro-laboratories TRIX: Trapped Radium Ion e. Xperiments Oscar Versolato TRIm. P: Trapped Radioactive Isotopes: micro-laboratories for fundamental

Outline • Where’s The Netherlands in Amsterdam? • Introduction to research group TRI P Outline • Where’s The Netherlands in Amsterdam? • Introduction to research group TRI P • TRIX project: Trapped (single !) Radium Ion e. Xperiments • Bonus material 1: shelving • Bonus material 2: ion trapping

Kingdom of The Netherlands Where people are Dutch and from Holland To US Kingdom of The Netherlands Where people are Dutch and from Holland To US

Er gaat niets boven Groningen Er gaat niets boven Groningen

Groningen: a students dream come true Groningen: a students dream come true

However. . . However. . .

Accelerator Laboratory: KVI with superconducting cyclotron AGOR Accelerator Laboratory: KVI with superconducting cyclotron AGOR

TRIm. P: Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics TRIm. P: Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics

Motivation Low-energy tests of the Standard Model The Standard Model (SM) of particle physics Motivation Low-energy tests of the Standard Model The Standard Model (SM) of particle physics is incomplete searches for physics “beyond the SM” at two, complementary, fronts: Collider expt’s at high energy: direct observation of new particles Indirect searches at lower energies, but with high precision Large Hadron Collider TRI P CERN High-energy physics KVI Atomic physics (theory and experiment) < 1%

TRIm. P: Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics Particle Physics Nuclear Physics TRIm. TRIm. P: Trapped Radioactive Isotopes: micro-laboratories for fundamental Physics Particle Physics Nuclear Physics TRIm. P Atomic Physics Theory Core External - lifetimes, CKM - branching ratios - 12 C → 3 a - 8 B → 2 a -… Program Users App lications Precision Experiments Search for Physics beyond Standard Model T-violation P-violation Lorentz-violation - Ion/Atom Collisions - Zernike LEIF - ALCa. TRAZ - Instrument Developments -…

In-House Core Program T – violation: • b-decays • 21 Na • Ba/Ra – In-House Core Program T – violation: • b-decays • 21 Na • Ba/Ra – atom • trapping • polarization • deuteron P – violation: • Single Ion • sin 2 ϴW • clock Lorentz - violation: • Weak Interactions Countrate • EDMs [106 /s] • ‘a’ & ‘D’ coefficients • lifetime, branching ratio • Future Possibilities • 39 Ca , 19 Ne 150 in trap Ba MOT 100 50 0 X 100 -80 -60 -40 -20 0 20 Detuning of l 1 [MHz]

TRIm. P Separator Target SHT 2 E 1 IFP Na. I E 2 FFP TRIm. P Separator Target SHT 2 E 1 IFP Na. I E 2 FFP Na. I MCP MOT E 3 TI Na. I Step degrader Na. I neutralizer

TRIm. P Scientific Personnel 2007 -2008 Faculty Ph. D student Technical {2 + pool} TRIm. P Scientific Personnel 2007 -2008 Faculty Ph. D student Technical {2 + pool} Theory group Undergrad. Atomic Physics group Foreign stud. Postdoc Fundamental Interactions group AGOR group + operators & technici

In-House Core Program T – violation: • b-decays • 21 Na • Ba/Ra – In-House Core Program T – violation: • b-decays • 21 Na • Ba/Ra – atom • trapping • polarization • deuteron P – violation: • Single Ion • sin 2 ϴW • clock Lorentz - violation: • Weak Interactions Countrate • EDMs [106 /s] • ‘a’ & ‘D’ coefficients • lifetime, branching ratio • Future Possibilities • 39 Ca , 19 Ne 150 in trap Ba MOT 100 50 0 X 100 -80 -60 -40 -20 0 20 Detuning of l 1 [MHz]

TRIX: Trapped Radium Ion e. Xperiments Atomic parity violation & All-optical atomic clock TRIX: Trapped Radium Ion e. Xperiments Atomic parity violation & All-optical atomic clock

Atomic Parity Violation The weak interaction gives the nucleus a weak charge q q Atomic Parity Violation The weak interaction gives the nucleus a weak charge q q γ e- e- Coulomb interaction (conserves parity) • Mediated by photons, massless, so long-range • Gives the atomic spectrum and E 1 etc. transitions • Strength scales ~ Z • Nucleus has an electric charge Weak interaction (violates parity) • Mediated by Z 0 bosons, mass ≈ 91 Ge. V, so short-range • Violation of selection rules (E 1 PNC transitions) • Strength scales ~ Z 3 • Nucleus has also a weak charge Qw q q Z 0 e- Weak charges of nuclear quarks add coherently: Qw = –N+(1– 4 sin 2θW)Z + small radiative corrections + “new physics” where θW is the weak mixing (or Weinberg) angle. e-

The running of the Weinberg angle A poorly tested prediction of the Standard Model The running of the Weinberg angle A poorly tested prediction of the Standard Model High energy (near the Z 0 -pole) • LEP @ CERN A. Czarnecki and W. J. Marciano, Nature (2005). Low energy: atomic parity violation (APV) • Cesium atoms: 6 S– 7 S transition Ø Experiment: 0. 35% by Wieman group, Boulder; theory: 0. 5% • Barium ions: 6 S– 5 D 3/2 transition Ø Experiment: Fortson group, Seattle; theory: 0. 5% • Francium atoms: 7 S– 8 S transition Ø Experiment: Stony Brook and Legnaro • Radium ions: 7 S– 6 D 3/2 transition Ø Experiment & theory: KVI, University of Groningen Medium energy • E 158 @ SLAC • parity viol. electron scattering • Nu. Te. V @ Fermilab • neutrino scattering • Qweak @ TJNAF • Qw(p) of the proton

The case for radium Why the radium ion is the ideal candidate E 1 The case for radium Why the radium ion is the ideal candidate E 1 APV S-S Advantages of Ra+ vs. Cs, Fr, Ba+ • Heavy (APV signal scales faster than ~ Z 3) • “Easy” lasers: semiconductor diodes • Single ion techniques: Ø Superior control of systematics Ø Novel -frequency- measurement method: light shifts S-D Cs 0. 9 Ba+ 2. 2 Fr 14. 2 Ra+ 46. 4

Atomic Parity Violation in a Radium ion 7 P Radium Ion 6 D ≠ Atomic Parity Violation in a Radium ion 7 P Radium Ion 6 D ≠ E 1 APV + E 2 parity 7 S + a bit of 7 P q q q γ e q Z 0 e Electromagnetism - e- e- Weak interaction

Atomic parity violation in Ra+ Interference of E 2/E 1 APV in AC Stark Atomic parity violation in Ra+ Interference of E 2/E 1 APV in AC Stark shift Interference produces differential light shift of ground state m-levels: Ra+ 7 P 3/2 7 P 1/2 6 D 5/2 6 D 3/2 Repump λ = 1. 08 μm Cooling & detection Off-resonant laser E 2 λ =468 nm Ddiff = Dpnc λ = 828 nm APV m=+1/2 E 1 w 0 7 S 1/2 (+ εn n P 1/2) m=-1/2 E 1+E 2 w 0 + Ddiff

From here to the Standard Model there and back again 1) measure the AC From here to the Standard Model there and back again 1) measure the AC stark shift get E 1 amplitude from differential part of the light shift 2) calculate atomic theory to < 1% and extract the weak charge 3) add a bit of QFT and find the Weinberg angle OR NEW PHYSICS Qw = –N+(1– 4 sin 2θW)Z + small radiative corrections + “new physics”

Optical Atomic Clock Spin-off project Based on 7 S 1/2 -6 D 3/2 E Optical Atomic Clock Spin-off project Based on 7 S 1/2 -6 D 3/2 E 2 transition: • Narrow (Δν ~ 1 Hz) • Optical regime (4 x 1014 Hz) High quality clock based on off-theshelf available semiconductor lasers • Absence of electric quadrupole shift in 223 Ra (I=3/2) • Heaviest system: 2 nd order Doppler ~ 1/mass • Ra+: search for variation of fine structure constant

Status & outlook From here to sin 2(Θw) First trapping & optical detection of Status & outlook From here to sin 2(Θw) First trapping & optical detection of radium ions in 2009! PMT counts [a. u. ] Experiment • Multiple ion traps have been constructed • Ba+ & Ra+ lasers set up in new, dedicated laser lab • Ra isotopes produced with AGOR cyclotron and TRIμP facility Done! Time [s] Theory • 3 % calculation finished, pushing for < 1 % accuracy now (inclusion of Breit, neutron skin and RCC improvements) APV L. W. Wansbeek et al. , Phys. Rev. • Precise experimental input is an absolute necessity (e. g. A 78, 050501 (2008) D-state lifetimes, E 1 transition strengths and hyperfine constants) First experimental goals • Study of different isotopes

The TRIμP radium ion experiment at the KVI Crew Experiment O. Böll (bachelor student) The TRIμP radium ion experiment at the KVI Crew Experiment O. Böll (bachelor student) G. S. Giri (Ph. D student) O. O. Versolato (Ph. D student) L. Willmann K. Jungmann Theory L. W. Wansbeek (Ph. D student) student B. K. Sahoo (postdoc) R. G. E. Timmermans Funding International collaborators • NWO Toptalent (OV) B. P. Das (India) • NWO VENI (BS) N. E. Fortson (USA) • FOM Projectruimte (KJ, RT)

Bonus material 1: Electron shelving method Bonus material 1: Electron shelving method

Bonus material 2: Trapping ions in a Paul trap Bonus material 2: Trapping ions in a Paul trap

Are there quantum jumps? Are there quantum jumps? "…we never experiment with just one atom or (small) molecule. In thought experiments we sometimes assume that we do; this invariably entails ridiculous consequences. " Erwin Schrödinger (1952)

Precision experiments on a single trapped ion how to trap an ion using E&M Precision experiments on a single trapped ion how to trap an ion using E&M Maxwell ! Harmonic potential 3 D case No charge enclosed Problem: Only 2 D trapped BUT 1 D repulsive!

The Paul trap and its mechanical analogue Needed: hyperbolically shaped surface Solution: Apply a The Paul trap and its mechanical analogue Needed: hyperbolically shaped surface Solution: Apply a rotating potential!