Скачать презентацию The Ultra Lightweight Support Structure and Gaseous Helium Скачать презентацию The Ultra Lightweight Support Structure and Gaseous Helium

6527d5af8c2d2934be53d6630c12bd9f.ppt

  • Количество слайдов: 67

The Ultra Lightweight Support Structure and Gaseous Helium Cooling for the Mu 3 e The Ultra Lightweight Support Structure and Gaseous Helium Cooling for the Mu 3 e Silicon Pixel Tracker Dirk Wiedner on behalf of Mu 3 e February 2014 Dirk Wiedner INSTR 14 25. 02. 2014 1

The Mu 3 e Signal • μ→eee rare in SM • Enhanced in: o The Mu 3 e Signal • μ→eee rare in SM • Enhanced in: o Super-symmetry o Grand unified models o Left-right symmetric models o Extended Higgs sector o Large extra dimensions Ø Rare decay (BR<10 -12, SINDRUM) • For BR O(10 -16) Ø >1016 muon decays Ø High decay rates O(109 muon/s) Dirk Wiedner INSTR 14 25. 02. 2014 2

The Mu 3 e Background • Combinatorial background o μ+→e+νν & e+eo many possible The Mu 3 e Background • Combinatorial background o μ+→e+νν & e+eo many possible combinations Ø Good time and Ø Good vertex resolution required Dirk Wiedner, Mu 3 e collaboration 7/17/2012 3

Combinatorics Dirk Wiedner, Mu 3 e collaboration 7/17/2012 4 Combinatorics Dirk Wiedner, Mu 3 e collaboration 7/17/2012 4

The Mu 3 e Background • μ+→e+e-e+νν o Missing energy (ν) Ø Good momentum The Mu 3 e Background • μ+→e+e-e+νν o Missing energy (ν) Ø Good momentum resolution (R. M. Djilkibaev, R. V. Konoplich, Phys. Rev. D 79 (2009) 073004) Dirk Wiedner, Mu 3 e collaboration 7/17/2012 5

Challenges • • Ø High rates Good timing resolution Good vertex resolution Excellent momentum Challenges • • Ø High rates Good timing resolution Good vertex resolution Excellent momentum resolution Extremely low material budget Dirk Wiedner, Mu 3 e collaboration 7/17/2012 6

Challenges • • Ø High rates: 109 μ/s Good timing resolution: 100 ps Good Challenges • • Ø High rates: 109 μ/s Good timing resolution: 100 ps Good vertex resolution: ~100 μm Excellent momentum resolution: ~ 0. 5 Me. V/c 2 Extremely low material budget: Ø 1 x 10 -3 X 0 (Si-Tracker Layer) Ø HV-MAPS spectrometer Ø 50 μm thin sensors Ø B ~1 T field Ø + Timing detectors Dirk Wiedner, Mu 3 e collaboration 7/17/2012 7

Phased Experiment Phase Ia • Muon beam O(107/s) • Helium atmosphere • 1 T Phased Experiment Phase Ia • Muon beam O(107/s) • Helium atmosphere • 1 T B-field Dirk Wiedner INSTR 14 • • • Target double hollow cone Silicon pixel tracker Scintillating fiber tracker Recurl station Tile detector 25. 02. 2014 8

Phased Experiment Phase Ib • Muon beam O(108/s) • Helium atmosphere • 1 T Phased Experiment Phase Ib • Muon beam O(108/s) • Helium atmosphere • 1 T B-field Dirk Wiedner INSTR 14 • • • Target double hollow cone Silicon pixel tracker Scintillating fiber tracker Recurl station Tile detector 25. 02. 2014 9

Phased Experiment Phase II Ca. 2 m total length • Muon beam O(109/s) • Phased Experiment Phase II Ca. 2 m total length • Muon beam O(109/s) • Helium atmosphere • 1 T B-field Dirk Wiedner INSTR 14 • • • Target double hollow cone Silicon pixel tracker Scintillating fiber tracker Recurl station x 2 Tile detector x 2 25. 02. 2014 10

Ultra Light Support Structure for the Pixel Tracker Dirk Wiedner INSTR 14 25. 02. Ultra Light Support Structure for the Pixel Tracker Dirk Wiedner INSTR 14 25. 02. 2014 11

Sandwich Design • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 Sandwich Design • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton™ flex print o 25 μm Kapton™ o 12. 5 μm Alu traces • Kapton™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Dirk Wiedner INSTR 14 <0. 1% of X 0 25. 02. 2014 12

Thinned Pixel Sensors • HV-MAPS* o Thinned to 50 μm o Sensors 1 x Thinned Pixel Sensors • HV-MAPS* o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton™ flex print o 25 μm Kapton™ o 12. 5 μm Alu traces • Kapton™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors *Previous talk: Tobias Weber “High Voltage Monolithic Active Pixel Sensors for the PANDA Luminosity Detector” Dirk Wiedner INSTR 14 Mu. Pix 3 thinned to < 90μm 25. 02. 2014 13

Kapton™ Flex Print • HV-MAPS o Thinned to 50 μm o Sensors 1 x Kapton™ Flex Print • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton™ flex print o 25 μm Kapton™ o 12. 5 μm Alu traces • Kapton™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Dirk Wiedner INSTR 14 Laser-cut flex print prototype 25. 02. 2014 14

Pixel Modules • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 Pixel Modules • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton™ flex print o 25 μm Kapton™ o 12. 5 μm Alu traces • Kapton™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors CAD of Kapton™ frames Dirk Wiedner INSTR 14 25. 02. 2014 15

Overall Design • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 Overall Design • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton™ flex print • Two halves for layers 1+2 • 6 modules in layer 3 • 7 modules in layer 4 o 25 μm Kapton™ o 12. 5 μm Alu traces • Kapton™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors CAD of Kapton™ frames Dirk Wiedner INSTR 14 25. 02. 2014 16

Inner Layers • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 Inner Layers • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton™ flex print o 25 μm Kapton™ o 12. 5 μm Alu traces • Kapton™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Dirk Wiedner INSTR 14 Vertex Prototype with 100 μm Glass 25. 02. 2014 17

Outer Module • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 Outer Module • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton™ flex print o 25 μm Kapton™ o 12. 5 μm Alu traces • Kapton™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Dirk Wiedner INSTR 14 Layer 3 Prototype in Assembling Frame with 50 μm Glass 25. 02. 2014 18

Detector Frame • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 Detector Frame • HV-MAPS o Thinned to 50 μm o Sensors 1 x 2 cm 2 or 2 x 2 cm 2 • Kapton™ flex print o 25 μm Kapton™ o 12. 5 μm Alu traces • Kapton™ Frame Modules o 25 μm foil o Self supporting • Alu end wheels o Support for all detectors Dirk Wiedner INSTR 14 Layer 3 Prototype in Assembling Frame with 50 μm Glass 25. 02. 2014 19

Cooling Dirk Wiedner INSTR 14 25. 02. 2014 20 Cooling Dirk Wiedner INSTR 14 25. 02. 2014 20

Cooling Concept He • Liquid cooling o For readout-electronics • Gaseous He cooling o Cooling Concept He • Liquid cooling o For readout-electronics • Gaseous He cooling o For Silicon tracker Liquid He Dirk Wiedner INSTR 14 25. 02. 2014 21

Liquid Cooling • Beam pipe cooling o o With cooling liquid 5°C temperature Significant Liquid Cooling • Beam pipe cooling o o With cooling liquid 5°C temperature Significant flow possible … using grooves in pipe • For electronics o FPGAs and o Power regulators o Mounted to cooling plates • Total power several k. W Dirk Wiedner INSTR 14 25. 02. 2014 22

He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air He • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR 14 He 150 m. W/cm 2 x 19080 cm 2 = 2. 86 KW 25. 02. 2014 23

He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR 14 Temperatures between 20°C to 70°C ok. 25. 02. 2014 24

He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR 14 25. 02. 2014 25

He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR 14 25. 02. 2014 26

He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air Kapton™ Frame • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR 14 Cooling outlets V-shape 25. 02. 2014 27

He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more He Cooling • Gaseous He cooling o Low multiple Coulomb scattering o He more effective than air • Global flow inside Magnet volume • Local flow for Tracker o Distribution to Frame • V-shapes • Outer surface Dirk Wiedner INSTR 14 25. 02. 2014 28

Comparison Simulation He and Air He Air Dirk Wiedner INSTR 14 25. 02. 2014 Comparison Simulation He and Air He Air Dirk Wiedner INSTR 14 25. 02. 2014 29

 • Full scale prototype o o Tests Layer 3+4 of silicon tracker Ohmic • Full scale prototype o o Tests Layer 3+4 of silicon tracker Ohmic heating (150 m. W/cm 2) 561. 6 W for layer 3 +4 … of Aluminum-Kapton™ • Cooling with external fan o Air at several m/s • Temperature sensors attached to foil o Lab. View readout • First results promising o ΔT < 60°K Dirk Wiedner INSTR 14 25. 02. 2014 30

Dirk Wiedner INSTR 14 25. 02. 2014 31 Dirk Wiedner INSTR 14 25. 02. 2014 31

 • Full scale prototype o o Tests Layer 3+4 of silicon tracker Ohmic • Full scale prototype o o Tests Layer 3+4 of silicon tracker Ohmic heating (150 m. W/cm 2) 561. 6 W for layer 3 +4 … of Aluminum-Kapton™ • Cooling with external fan o Air at several m/s • Temperature sensors attached to foil o Lab. View readout • First results promising o ΔT < 60°K Dirk Wiedner INSTR 14 25. 02. 2014 32

Test Results • Full scale prototype o o Layer 3+4 of silicon tracker Ohmic Test Results • Full scale prototype o o Layer 3+4 of silicon tracker Ohmic heating (150 m. W/cm 2) 561. 6 W for layer 3 +4 … of Aluminum-Kapton™ • Cooling with external fan o Air at several m/s • Temperature sensors attached to foil o Lab. View readout • First results promising o ΔT < 60°K Ø No sign of vibration in air Dirk Wiedner INSTR 14 25. 02. 2014 33

Comparison Simulation and Tests Dirk Wiedner INSTR 14 25. 02. 2014 34 Comparison Simulation and Tests Dirk Wiedner INSTR 14 25. 02. 2014 34

Simulation with V-shape cooling • Configuration: o Main helium flux: v = 0. 5 Simulation with V-shape cooling • Configuration: o Main helium flux: v = 0. 5 m/s o Flux in Nozzle: v = 5 m/s • In V-shape against main flux • Next to V-shape against main flux Ø 31. 42 m. L/s per nozzle Ø 6. 786 L/s for 3. Layer • Results: o o o ∆Tmax ≈ 42°C ∆Tmax close to end of tube T raises at last third of tube → Extra Improvement using V-shapes as cooling channels Dirk Wiedner INSTR 14 25. 02. 2014 35

Simulation with V-shape cooling • Configuration: o Main helium flux: v = 0. 5 Simulation with V-shape cooling • Configuration: o Main helium flux: v = 0. 5 m/s o Flux in Nozzle: v = 5 m/s • In V-shape against main flux • Next to V-shape against main flux Ø 31. 42 m. L/s per nozzle Ø 6. 786 L/s for 3. Layer • Results: o o o ∆Tmax ≈ 42°C ∆Tmax close to end of tube T raises at last third of tube → Extra Improvement using V-shapes as cooling channels Dirk Wiedner INSTR 14 25. 02. 2014 36

Summary • Mechanics o Ultralight Sandwich Structure <0. 1%X 0 o Self Supporting o Summary • Mechanics o Ultralight Sandwich Structure <0. 1%X 0 o Self Supporting o Assembly tests have started • Cooling o Liquid cooling of beam pipe o Gaseous He cooling of Tracker o Ongoing studies encouraging Dirk Wiedner INSTR 14 25. 02. 2014 37

Backup slides Dirk Wiedner INSTR 14 25. 02. 2014 38 Backup slides Dirk Wiedner INSTR 14 25. 02. 2014 38

He Properties • • • Molecular weight : 4. 0026 g/mol Gaseous phase Gas He Properties • • • Molecular weight : 4. 0026 g/mol Gaseous phase Gas density (1. 013 bar at boiling point) : 16. 752 kg/m 3 Gas density (1. 013 bar and 15 °C (59 °F)) : 0. 1692 kg/m 3 Compressibility Factor (Z) (1. 013 bar and 15 °C (59 °F)) : 1. 0005 Specific gravity : 0. 138 Specific volume (1. 013 bar and 25 °C (77 °F)) : 6. 1166 m 3/kg Heat capacity at constant pressure (Cp) (1. 013 bar and 25 °C (77 °F)) : 0. 0208 k. J/(mol. K) Heat capacity at constant volume (Cv) (1. 013 bar and 25 °C (77 °F)) : 0. 0125 k. J/(mol. K) Ratio of specific heats (Gamma: Cp/Cv) (1. 013 bar and 25 °C (77 °F)) : 1. 6665 Viscosity (1. 013 bar and 0 °C (32 °F)) : 1. 8695 E-04 Poise Thermal conductivity (1. 013 bar and 0 °C (32 °F)) : 146. 2 m. W/(m. K) Dirk Wiedner INSTR 14 25. 02. 2014 39

Air Properties • • • Molecular weight : 28. 96 g/mol Gaseous phase Gas Air Properties • • • Molecular weight : 28. 96 g/mol Gaseous phase Gas density (1. 013 bar at boiling point) : 3. 2 kg/m 3 Gas density (1. 013 bar and 15 °C (59 °F)) : 1. 225 kg/m 3 Compressibility Factor (Z) (1. 013 bar and 15 °C (59 °F)) : 0. 9996 Specific gravity : 1 Specific volume (1. 013 bar and 25 °C (77 °F)) : 0. 8448 m 3/kg Heat capacity at constant pressure (Cp) (1. 013 bar and 25 °C (77 °F)) : 0. 0291 k. J/(mol. K) Heat capacity at constant volume (Cv) (1. 013 bar and 25 °C (77 °F)) : 0. 0208 k. J/(mol. K) Ratio of specific heats (Gamma: Cp/Cv) (1. 013 bar and 25 °C (77 °F)) : 1. 4018 Viscosity (1 bar and 0 °C (32 °F)) : 1. 721 E-04 Poise Thermal conductivity (1. 013 bar and 0 °C (32 °F)) : 24. 36 m. W/(m. K) Dirk Wiedner INSTR 14 25. 02. 2014 40

Radiation Length • Radiation length per layer o 2 x 25 μm Kapton o Radiation Length • Radiation length per layer o 2 x 25 μm Kapton o X 0= 1. 75∙ 10 -4 • 15 μm aluminum traces o o o (50% coverage) X 0= 8. 42 ∙ 10 -5 50 μm Si MAPS X 0= 5. 34 ∙ 10 -4 10 μm adhesive X 0= 2. 86 ∙ 10 -5 • Sum: 8. 22 ∙ 10 -4 (x 4 layers) o For Θmin = 22. 9◦ o X 0= 21. 1 ∙ 10 -4 Dirk Wiedner INSTR 14 25. 02. 2014 41

Thinning • 50 μm Si-wafers o Commercially available o HV-CMOS 75 μm (AMS) • Thinning • 50 μm Si-wafers o Commercially available o HV-CMOS 75 μm (AMS) • Single die thinning o o For chip sensitivity studies < 50 μm desirable 90 μm achieved and tested In house grinding? Dirk Wiedner, Mu 3 e collaboration 7/17/2012 42

Thinned Sensors • Single dies thinned: Time Over Threshold o Mu. Pix 2 thinned Thinned Sensors • Single dies thinned: Time Over Threshold o Mu. Pix 2 thinned to < 80μm o Mu. Pix 3 thinned to < 90μm • Good performance of thin chips o In lab o In particle beam Reference • Similar Time over Threshold (To. T) o PSI test-beam o Pi. M 1 beam-line o 193 Me. V π+ Dirk Wiedner PSI 1/14 Thin < 90μm 27. 01. 2014 43

Combinatorics using Timing System Dirk Wiedner, Mu 3 e collaboration 7/17/2012 44 Combinatorics using Timing System Dirk Wiedner, Mu 3 e collaboration 7/17/2012 44

Muon Stopping Target • Requirements: ▪ Sufficient material in beam direction to stop 29 Muon Stopping Target • Requirements: ▪ Sufficient material in beam direction to stop 29 Me. V/c surface muons ▪ Thin for decay electrons in detector acceptance • Baseline solution: ▪ Hollow double cone ▪ Aluminum 20 mm 100 mm ▪ Thickness: 30 μm (us cone), 80 μm (ds cone) • Manufacturing (brainstorming): ▪ ▪ Dirk Wiedner INSTR 14 Rolled up Al-foil Additive manufacturing / 3 D printing Casting (D: Giessen) → first trial Impact extrusion (D: Fliesspressen) 25. 02. 2014 45

Target Prototyping • Components of mold o Casting mold o Spike o Additional spacer Target Prototyping • Components of mold o Casting mold o Spike o Additional spacer • Achievable properties: o Density ~1. 8 g/cm 3 o Minimal wall thickness ~50 μm • Next steps: o New mold • (first one „deformed“ due to frequent pressure cycles) o Proof listed properties by manufacturing of cone Dirk Wiedner INSTR 14 25. 02. 2014 46

Target Prototyping • Components of mold o Casting mold o Spike o Additional spacer Target Prototyping • Components of mold o Casting mold o Spike o Additional spacer • Achievable properties: o Density ~1. 8 g/cm 3 o Minimal wall thickness ~50 μm • Next steps: o New mold • (first one „deformed“ due to frequent pressure cycles) o Proof listed properties by manufacturing of cone Dirk Wiedner INSTR 14 25. 02. 2014 47

Target Prototyping • Components of mold o Casting mold o Spike o Additional spacer Target Prototyping • Components of mold o Casting mold o Spike o Additional spacer • Achievable properties: o Density ~1. 8 g/cm 3 o Minimal wall thickness ~50 μm • Next steps: o New mold • (first one „deformed“ due to frequent pressure cycles) o Proof listed properties by manufacturing of cone Dirk Wiedner INSTR 14 25. 02. 2014 48

Fiber Tracker • Fiber ribbon modules o o 16 mm wide 360 mm long Fiber Tracker • Fiber ribbon modules o o 16 mm wide 360 mm long 3 layers fibers of 250 μm dia. 3 STi. C readout chips • Total fiber Tracker: o 24 ribbon-modules o 72 read-out chips o 4536 fibers • Prototype ribbons built: o 3 layers o 16 mm wide o 360 mm long • CAD in progress Dirk Wiedner INSTR 14 Scintillating fiber ribbons See: Fibres Alessandro Bravar (Geneva University) 25. 02. 2014 49

Tile Detector • Scintillating tiles o 8. 5 x 7. 5 x 5 mm Tile Detector • Scintillating tiles o 8. 5 x 7. 5 x 5 mm 3 • 12 Tile Modules per station o 192 tiles/module o Attached to end rings • Si. PMs attached to tiles o Front end PCBs below o Readout through STi. C Dirk Wiedner INSTR 14 See: Tiles Patrick Eckert (KIP Uni Heidelberg) Sketch of Tile detector station 25. 02. 2014 50

Tile Detector • Scintillating tiles o 8. 5 x 7. 5 x 5 mm Tile Detector • Scintillating tiles o 8. 5 x 7. 5 x 5 mm 3 • 12 Tile Modules per station o 192 tiles/module o Attached to end rings • Si. PMs attached to tiles o Front end PCBs below o Readout through STi. C Dirk Wiedner INSTR 14 See: Tiles Patrick Eckert (KIP Uni Heidelberg) CAD of Tile Detector integration 25. 02. 2014 51

Beam Pipe • Stainless steel pipe o Shields against background • Mechanical support o Beam Pipe • Stainless steel pipe o Shields against background • Mechanical support o Detectors attached to beam pipe o Via end rings • Read-out PCBs attached o FPGAs mounted directly o Integrated cooling Dirk Wiedner INSTR 14 Beam pipe design 25. 02. 2014 52

Beam Pipe • Stainless steel pipe o Shields against background • Mechanical support o Beam Pipe • Stainless steel pipe o Shields against background • Mechanical support o Detectors attached to beam pipe o Via end rings • Read-out PCBs attached o FPGAs mounted directly o Integrated cooling Dirk Wiedner INSTR 14 Beam pipe supports detectors 25. 02. 2014 53

Beam Pipe • Stainless steel pipe o Shields against background • Mechanical support o Beam Pipe • Stainless steel pipe o Shields against background • Mechanical support o Detectors attached to beam pipe o Via end rings • Read-out PCBs attached o FPGAs mounted directly o Integrated cooling Dirk Wiedner INSTR 14 PCBs mounted on beam pipe 25. 02. 2014 54

Overall Assembly • CAD of: o o o Silicon Tracker + Tile detector + Overall Assembly • CAD of: o o o Silicon Tracker + Tile detector + Target + PCBs + Beam pipe + Cooling • To be added: o Scintillating fiber detector o Cabling o Cage and rails in Magnet Dirk Wiedner INSTR 14 CAD of Phase I detector 25. 02. 2014 55

Tile Detector • Scintillating tiles o 8. 5 x 7. 5 x 5 mm Tile Detector • Scintillating tiles o 8. 5 x 7. 5 x 5 mm 3 • 12 Tile Modules per station o 192 tiles/module o Attached to end rings • Si. PMs attached to tiles o Front end PCBs below o Readout through STi. C Dirk Wiedner INSTR 14 See: Tiles Patrick Eckert (KIP Uni Heidelberg) Tile detector 4 x 4 prototype 25. 02. 2014 56

Magnet Dirk Wiedner INSTR 14 25. 02. 2014 57 Magnet Dirk Wiedner INSTR 14 25. 02. 2014 57

Magnet Specification • • 0. 8 – 2 T field 1 m warm bore Magnet Specification • • 0. 8 – 2 T field 1 m warm bore 2 m homogenous in z 2. 5 m coil + shielding Compensation coils 10 -3 homogeneity 10 -4 stability D 0 magnet similar Dirk Wiedner INSTR 14 25. 02. 2014 58

Magnet Specification • • 0. 8 – 2 T field 1 m warm bore Magnet Specification • • 0. 8 – 2 T field 1 m warm bore 2 m homogenous in z 2. 5 m coil + shielding Compensation coils 10 -3 homogeneity 10 -4 stability Dirk Wiedner INSTR 14 Magnet Dimensions 25. 02. 2014 59

Magnet Specification • • 0. 8 – 2 T field 1 m warm bore Magnet Specification • • 0. 8 – 2 T field 1 m warm bore 2 m homogenous in z 2. 5 m coil + shielding Compensation coils 10 -3 homogeneity 10 -4 stability Dirk Wiedner INSTR 14 Compensation coil effect 25. 02. 2014 60

2 m plus Compensation Coils vs 3 m Coilm 3 2 m plus compensation 2 m plus Compensation Coils vs 3 m Coilm 3 2 m plus compensation coils z field Radial field Dirk Wiedner INSTR 14 25. 02. 2014 61

Momentum Resolution 2 m coil Dirk Wiedner INSTR 14 3 m coil 25. 02. Momentum Resolution 2 m coil Dirk Wiedner INSTR 14 3 m coil 25. 02. 2014 62

Efficiency Compensation Dirk Wiedner INSTR 14 25. 02. 2014 63 Efficiency Compensation Dirk Wiedner INSTR 14 25. 02. 2014 63

Space Restrictions • Phase I: o Beam line at πE 5 o Surface muons Space Restrictions • Phase I: o Beam line at πE 5 o Surface muons from target E o Up to a 108 μ/s • Space shared with MEG experiment Dirk Wiedner INSTR 14 25. 02. 2014 64

Mu 3 e Compact Beam Line Separator MEG 2 working site Quadrupole Triplett Dipole Mu 3 e Compact Beam Line Separator MEG 2 working site Quadrupole Triplett Dipole Magnets Mu 3 e Spectrometer Solenoid Dirk Wiedner INSTR 14 25. 02. 2014 65

Space Restrictions • Phase I: o Beam line at πE 5 o Surface muons Space Restrictions • Phase I: o Beam line at πE 5 o Surface muons from target E o Up to 108 μ/s • Space shared with MEG experiment • Maximum magnet size: o 3. 1 m long o 2 m diameter • Air-cushions underneath • Limited roof height 3. 5 m Dirk Wiedner INSTR 14 25. 02. 2014 66

Outlook • Mechanics o Functional tests of prototypes o Integration of prototypes in global Outlook • Mechanics o Functional tests of prototypes o Integration of prototypes in global design • Cooling o Test local cooling with module prototypes o He tests • Magnet o DFG application Dirk Wiedner INSTR 14 25. 02. 2014 67