Скачать презентацию The case for High energy neutrino astronomy Eli Скачать презентацию The case for High energy neutrino astronomy Eli

00854fa7e69844dd5816ee093f0ccf1e.ppt

  • Количество слайдов: 25

The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL The case for High energy neutrino astronomy Eli Waxman Weizmann Institute, ISRAEL

High energy n’s: A new window Me. V n detectors: • Solar & SN High energy n’s: A new window Me. V n detectors: • Solar & SN 1987 A n’s • Stellar physics (Sun’s core, SNe core collapse) • n physics >0. 1 Te. V n detectors: • Extend n horizon to extra-Galactic scale Me. V n detectors limited to local (Galactic) sources [10 kt @ 1 Me. V 1 Gton @ Te. V , s. Te. V/s. Me. V~106 ] • Study “Cosmic accelerators” [pg, pp p’s n’s] • n physics

v R The 1020 e. V challenge /G B v G 2 2 R v R The 1020 e. V challenge /G B v G 2 2 R G 2 l =R/G (dt. RF=R/Gc) [Waxman 95, 04, Norman et al. 95] • AGN (Steady): G~ 101 L>1014 LSun few brightest [Blandford 76; Lovelace 76] 3 d >> 100 Mpc ? ? AGN flares ~1/100 Gpc [Farrar & Gruzinov 08] • GRB (transient): G~ 102. 5 L>1017 LSun Lg~ 1018 LSun [Waxman 95, Vietri 95, Milgrom & Usov 95]

Source physics • GRB: • AGN: • MQ: 1020 LSun, MBH~1 Msun, M~1 Msun/s, Source physics • GRB: • AGN: • MQ: 1020 LSun, MBH~1 Msun, M~1 Msun/s, G~102. 5 1014 LSun, MBH~109 Msun, M~1 Msun/yr, G~101 105 LSun, MBH~1 Msun, M~10 -8 Msun/yr, G~100. 5 Jet acceleration Energy extraction Jet content (kinetic/Poynting) Particle acceleration Radiation mechanisms

Clues: CR phenomenology log [d. J/d. E] E-2. 7 Galactic heavy (“hypernovae” Z~10 to Clues: CR phenomenology log [d. J/d. E] E-2. 7 Galactic heavy (“hypernovae” Z~10 to 1019 e. V) Protons Flattening, Near isotropy, Heavy light (? ) E-3 X-Galactic, ? Light Heavy Nuclei 1 106 1010 Cosmic-ray E [Ge. V] [Blandford & Eichler, Phys. Rep. 87; Axford, Ap. JS 94; Nagano & Watson, Rev. Mod. Phys. 00]

Constraints: Flux & Spectrum Particle acc. ; SFR , AGN, GRB [Waxman 1995; Bahcall Constraints: Flux & Spectrum Particle acc. ; SFR , AGN, GRB [Waxman 1995; Bahcall & Waxman 03] [Berezinsky et al. 08] DEsys/E~20% [Kashti & Waxman 08]

Clues: Anisotropy Biased (rsource~mapfor rgal>rgal ) CR intensity rgal (rsource~rgal ) [Kashti & Waxman Clues: Anisotropy Biased (rsource~mapfor rgal>rgal ) CR intensity rgal (rsource~rgal ) [Kashti & Waxman 08] Galaxy density integrated to 75 Mpc [Waxman, Fisher & Piran 1997] • Cross-correlation signal: Anisotropy @ 98% CL; Consistent with LSS Few fold increase >99% CL, but not 99. 9% CL • Correlation with AGN ? [Auger collaboration 07] VCV catalogue: 99% CL Swift catalogue: 84% (98% a posteriori) CL [George et al. 08] low-luminosity AGN? Simply trace LSS!

>1019 e. V cosmic rays: Clue summary • Spectrum (+Xmax) likely X-Galactic protons • >1019 e. V cosmic rays: Clue summary • Spectrum (+Xmax) likely X-Galactic protons • Anisotropy + Spectrum likely “Conventional” sources • L constraint likely Transient sources • Ep 2 d. N/d. Ep~ 0. 7 x 1044 erg/Mpc 3 yr • What next for Auger? Identify (narrow spectrum) point source(s)?

HE n Astronomy • p+g N+p p 0 2 g ; p+ e+ + HE n Astronomy • p+g N+p p 0 2 g ; p+ e+ + ne + nm Identify UHECR sources Study BH accretion/acceleration physics • E 2 dn/d. E=1044 erg/Mpc 3 yr + tgp<1: [Waxman & Bahcall 99; Bahcall & Waxman 01] • If X-G p’s: Identify primaries, determine f(z)

AGN n models? ? BBR 05 AGN n models? ? BBR 05

Experiments • Optical Cerenkov - South Pole Amanda: 660 OM, 0. 05 km 3 Experiments • Optical Cerenkov - South Pole Amanda: 660 OM, 0. 05 km 3 Ice. Cube: +660/yr OM (05/06, 06/07) 4800 OM=1 km 3 s - Mediterranean Antares: 10 lines (Nov 07), 750 OM 0. 05 km 3 Nestor: (? ) 0. 1 km 3 Net: R&D 1 km 3 • UHE: Radio Air shower Aura, Ariana (in Ice) Auger (nt) ANITA (Balloon) EUSO (? ) LOFAR

Generic GRB fireball n’s • If: Baryonic jet, internal shocks (Weak dependence on model Generic GRB fireball n’s • If: Baryonic jet, internal shocks (Weak dependence on model parameters) • Background free: [Waxman & Bahcall 97, 99; Rachen & Meszaros 98; Alvarez-Muniz & F. Halzen 99; Guetta et al. 04; Hooper, Alvarez-Muniz, Halzen & E. Reuveni 04]

The current limit [Achterberg et al. 07 (The Ice. Cube collaboration)] The current limit [Achterberg et al. 07 (The Ice. Cube collaboration)]

n- physics & astro-physics • p decay ne: nm: nt = 1: 2: 0 n- physics & astro-physics • p decay ne: nm: nt = 1: 2: 0 (Osc. ) ne: nm: nt = 1: 1: 1 [Waxman & Bahcall 97] t appearance experiment • GRBs: n-g timing (10 s over Hubble distance) LI to 1: 1016; WEP to 1: 106 [Waxman & Bahcall 97; Amelino-Camelia, et al. 98; Coleman &. Glashow 99; Jacob & Piran 07] • EM energy loss of m’s (and p’s) ne: nm: nt = 1: 1: 1 (E>E 0) 1: 2: 2 GRBs: E 0~1015 e. V [Rachen & Meszaros 98; Kashti & Waxman 05] • Combining EE 0 flavor measurements may constrain CPV [Sin. Q 13 Cosd] [Blum, Nir & Waxman 05]

Outlook • Particle+Astro-phys. Open Q’s - >1011 Ge. V particles: primaries, f(z), origin & Outlook • Particle+Astro-phys. Open Q’s - >1011 Ge. V particles: primaries, f(z), origin & acceleration - Physics of relativistic sources (GRBs, AGN, MQ…) es c Energy extraction from BH accretion ur o ts Relativistic plasma physics oin - “Conventional” astrophysics (starburst ISM) dp e - nm nt t appearance ifi nt se 16; WEP to 1: 106 e gn Timing LI to 1: 10 Id iffu Flavor ratios CPV D • New HE g, CR and n detectors >103 km 2 hybrid >1019 e. V CR detectors ~1 km 3 (=1 Gton) 1 -1000 Te. V n detectors >>1 km 3 [radio, …] >>1000 Te. V n detectors 10 Me. V— 10 Ge. V g-ray satellite (AGILE, GLAST) >0. 1 Te. V (ground based) g-ray telescopes (Milagro, HESS, MAGIC, VERITAS)

Composition clues Hi. Res 2005 Composition clues Hi. Res 2005

GRB proton/electron acceleration Electrons Protons • Me. V g’s: • Acceleration/expansion: • • Synchrotron GRB proton/electron acceleration Electrons Protons • Me. V g’s: • Acceleration/expansion: • • Synchrotron losses: tgg<1: • e- (g) spectrum: • Proton spectrum: • e- (g) energy production • p energy production: [Waxman 95, 04]

The GRB “GZK sphere” • LSS filaments: D~1 Mpc, f. V~0. 1, n~10 -6 The GRB “GZK sphere” • LSS filaments: D~1 Mpc, f. V~0. 1, n~10 -6 cm-3, T~0. 1 ke. V e. B=(B 2/8 p)/n. T~0. 01 (B~0. 01 m. G), l. B~10 kpc g p D l. B • Prediction: [Waxman 95; Miralda-Escude & Waxman 96, Waxman 04]

GRB Model Predictions [Miralda-Escude & Waxman 96] GRB Model Predictions [Miralda-Escude & Waxman 96]

AMANDA & Ice. Cube AMANDA & Ice. Cube

The Mediterranean effort • ANTARES (NESTOR, NEMO) KM 3 Ne. T The Mediterranean effort • ANTARES (NESTOR, NEMO) KM 3 Ne. T

M 82 Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith M 82 Mark Westmoquette (University College London), Jay Gallagher (University of Wisconsin-Madison), Linda Smith (University College London), WIYN//NSF, NASA/ESA M 81 Robert Gendler

A lower bound: Star bursts • Star burst galaxies: - Star Formation Rate ~103 A lower bound: Star bursts • Star burst galaxies: - Star Formation Rate ~103 Msun/yr >> 1 Msun/yr “normal” (MW) - Density ~103/cc >> 1/cc “normal” - B ~1 m. G >> 1 m. G “normal” • Most stars formed in (z>1. 5) star bursts • High density + B: CR e-’s lose all energy to synchrotron radiation [Quataert et al. 06] CR p’s lose all energy to p production [Loeb & Waxman 06]

Synchrotron radio calibration Fn [Loeb & Waxman 06] Synchrotron radio calibration Fn [Loeb & Waxman 06]