теплопроводящие покрытия.pptx
- Количество слайдов: 12
Термоинтерфейс — слой теплопроводящего состава (обычно многокомпонентного) между охлаждаемой поверхностью и отводящим тепло устройством. Наиболее распространенным типом термоинтерфейса являются теплопроводящие пасты. Типы термоинтерфейсов Теплопроводные составы находят применение при производстве электронных компонентов, в теплотехнике и измерительной технике, а также при производстве радиоэлектронных устройств с высоким тепловыделением. Термоинтерфейсы имеют следующие формы: теплопроводящие пастообразные составы; полимеризующиеся теплопроводные составы; теплопроводящие клеющие составы; теплопроводящие прокладки; припои и жидкие металлы.
Теплопроводные пасты Теплопроводная паста (разг. термопаста) — многокомпонентное пластичное вещество с высокой теплопроводностью, используемое для уменьшения теплового сопротивления между двумя соприкасающимися поверхностями. Теплопроводящая паста служит для замены воздуха, находящегося между поверхностями, на теплопроводящую пасту с более высокой теплопроводностью. Типичными и самыми распространенными термопроводными пастами отечественного производства являются КПТ-8 и Ал. Сил-3 Требования Основные требования к термопроводным пастам: наименьшее тепловое сопротивление; стабильность свойств с течением времени работы и хранения; стабильность свойств в рабочем диапазоне температур; удобство нанесения и легкость смывания; в некоторых случаях к теплопроводным составам предъявляются требования высоких электроизоляционных свойств
Составы При изготовлении термопроводных паст в качестве теплопроводящих компонентов используются наполнители с высокой теплопроводностью в виде микро- и нанодисперсных порошков и их смеси: металлов (вольфрам, медь, серебро); микрокристаллов (алмаз); оксиды металлов (цинка, алюминия и др. ); нитридов (бора, алюминия); графита; графена.
В качестве связующих веществ используются минеральные или синтетические масла, жидкости и их смеси, имеющие низкую испаряемость. Существуют теплопроводные пасты с полимеризующимся на воздухе связующим. Иногда, с целью повышения плотности, в их состав добавляются легкоиспаряемые компоненты, которые позволяют иметь достаточно жидкую теплопроводную пасту в процессе нанесения и высоко плотный термоинтефейс с высокой теплопроводностью. Такие теплопроводные составы обычно выходят на максимальную теплопроводность в течение 5 -100 часов работы в штатном режиме (конкретные значения в инструкции по применению). Существуют термопроводные пасты на основе жидких при 20 -25°С металлов, состоящие из чистых индия и галлия и сплавов на их основе.
Использование Термопаста используется в электронных устройствах в качестве термоинтерфейса между тепловыделяющими элементами и устройствами отвода тепла от них (например, между процессором и кулером). Главное требование применении теплопроводящей пасты - минимальная толщина ее слоя. Для этого при нанесении теплопроводящих паст необходимо руководствоваться рекомендациями изготовителя. Небольшое количество пасты, нанесенное на область теплового контакта, раздавливается прижиме поверхностей друг к другу. При этом паста заполняет мельчайшие углубления в поверхностях и вытесняет воздух, обладающий крайне низкой теплопроводностью.
Другие случаи применения. Термопаста используется при охлаждении узлов электроники, имеющих тепловыделение больше допустимого для данного типа корпуса: силовых транзисторов и микросхем питания (ключах) в импульсных блоках питания, в блоках строчной развёртки телевизоров с кинескопом, транзисторов выходных каскадов мощных усилителей Теплопроводные клеи Применяется в случае, если невозможно использование теплопроводной пасты (из-за отсутствия крепежа), для монтажа теплоотводящей арматуры к процессору, транзистору и т. п. Это неразборное соединение и требует соблюдения технологии склейки. В случае ее нарушения возможно увеличение толщины термоинтерфейса и ухудшение теплопроводности соединения.
Пайка Набирающий популярность термоинтерфейс основан на спайке поверхностей легкоплавким металлом. При правильном применении такой метод дает рекордные параметры удельной теплопроводности, однако имеет множество ограничений и подводных камней. В первую очередь проблемой является материал поверхностей и качество подготовки к монтажу. В производственных условиях возможна пайка любых материалов (некоторые требуют специальной подготовки поверхностей). В бытовых условиях или в мастерских пайкой соединяются медные, серебряные, золотые поверхности и другие хорошо поддающиеся лужению материалы. Алюминиевые, керамические и полимерные поверхности совершенно непригодны (а значит, невозможна гальваническая изоляция деталей).
Перед соединением пайкой, соединяемые поверхности очищают от загрязнений. Чрезвычайно важна качественная очистка поверхностей от всех типов загрязнений и следов коррозии, поскольку при низких температурах флюсы неэффективны и не используются. Очистка выполняется механической зачисткой и удалением загрязнений растворителями (например спиртом, ацетоном, эфиром), для чего в коробку с термоинтерфейсом часто вкладывают жесткую мочалку и гигиеническую проспиртованную салфетку. По этой же причине нельзя работать с термоинтерфейсом без перчаток: жир значительно ухудшает качество пайки.
Собственно пайка выполняется нагревом соединения при заданном производителем термоинтерфейса усилии. При этом некоторые типы промышленных термоинтерфейсов требуют первоначального разогрева обеих спаиваемых деталей до 60 -90 градусов Цельсия, что может быть опасно для чувствительных к перегреву электронных компонентов. Обычно рекомендуют делать предварительный разогрев (например феном) с последующей окончательной спайкой саморазогревом работающего устройства. На сегодня термоинтерфейс такого типа предлагается в виде фольги из сплава с температурой плавления чуть выше комнатной (50. . . 90 градусов Цельсия, например сплава Филдса (англ. )русск. ) и в виде пасты металла с комнатной температурой плавления. Пасты сложнее в применении (их необходимо тщательно вмазывать в спаиваемые поверхности). Фольга требует специального прогрева при монтаже.
Изолирующие термоинтерфейсы Электрическая изоляция между элементами теплопередачи обычно используется в силовой электронике. Выполняется с помощью керамических, слюдяных, силиконовых или пластиковых прокладок, подложек, покрытий: гибкие прокладки из силиконовых компаундов и твердые прокладки из керамики; печатные платы с основой из алюминиевого или медного листа, покрытого тонким керамическим слоем поверх которого нанесена медная фольга дорожек. Такие платы как правило "односторонние" (фольга с одной стороны), а второй стороной они крепятся к теплоотводу (радиатору). полностью изолированные силовые компоненты (металлический теплоотвод стандартных корпусов силовых электронных компонентов покрыт слоем эпоксидного состава).
Применение Нанесение и снятие термоинтерфейса выполняется строго по инструкции производителя устройства охлаждения и термоинтерфейса. Некоторые типы термоинтерфейсов являются электропроводящими, поэтому с ними нужно проявлять особую осторожность (не допускать излишков электропроводящего материала) при нанесении на поверхность с целью недопущения нежелательных и опасных электросоединений!
Спасибо за внимание! Подготовил: Керимбеков Д.
теплопроводящие покрытия.pptx