6. Т. и ф. анат. нервной системы.pptx
- Количество слайдов: 26
Теоретическая и функциональная анатомия нервной системы
Нервная ткань Нейроны Нейроглия Нейроны способны воспринимать раздражения, переходить в состояние возбуждения, вырабатывать и передавать нервный импульс. Они также участвуют в обработке, генерации, хранении и извлечении информации из памяти. Нейроглия Шванновская клетка (олигодендроцит) формирует вокруг аксона миелиновую оболочку (миелиновое волокно) Безмиелиновое волокно (от греч. glia – клей) – клетки нейроглиоцитов, которых в несколько десятков раз больше, чем самих нейронов. Их функции многообразны: трофическая, опорная, защитная и др.
Структурно-функциональной единицей нервной ткани является нейрон. Части нейрона: 1. Тело нейрона. 2. Аксон – отросток, по которому импульс идет от тела нейрона на периферию (к другому нейрону или к исполнительной клетке). 3. Дендрит – отросток, по которому импульс идет к телу нейрона с периферии (от другого нейрона или от рецептора). Направление нервного импульса Аксон Дендрит Нейрон динамически поляризован, то есть способен пропускать нервный импульс только в одном направлении – от дендрита, через тело клетки к аксону.
Нейроны контактируют друг с другом, формируя цепочки. Регулирует направление движения импульса не только поляризация самих нейронов, но и особая конструкция межнейронных контактов – синапсов. 1 2 Направление проведения нервного импульса 1 Динамическая поляризация синапсов 2 1. - Аксон передает импульс на тело следующего в цепочке нейрона 2. - Аксон передает импульс на дендрит следующего в цепочке нейрона
Синапсами (от греч. synapses – соединение, связь) называются межклеточные контакты, дающие возможность импульсам переходить от одного нейрона к другому. Синапсы находятся там, где аксон одного нейрона заканчивается на дендрите или на теле другого нейрона. Когда либо подавляют импульсы достигают синапса, они вызывают, либо возникновение импульсов в следующем нейроне. Межнейронные синапсы очень многочисленны и разнообразны. Чаще всего в организме встречаются нейрохимические синапсы, в которых в синаптическую щель из синаптических пузырьков выделяются биологически активные вещества – медиаторы.
Строение синапса Синаптический пузырек выходит в синаптическую щель Медиатор синаптического пузырька соединяется с рецептором постсинаптической мембраны Синапс образован пресинаптической и постсинаптической мембранами, разделенными узкой синаптической щелью. В зависимости от характера медиатора синапсы подразделяются на: Ø холинергические (ацетилхолин), Ø адренергические (адреналин, норадреналин), Ø гистаминергические (гистамин) и пр.
По строению различают следующие типы нейронов: 1. Мультиполярные - имеют несколько 1 2 3 4 отростков, из которых только один является аксоном; 2. Униполярные - имеют только один длинный отросток, являющийся аксоном; 3. Биполярные - имеют два отростка, один из которых является аксоном, а другой – дендритом; 4. Псевдоуниполярные, имеющие один длинный отросток, который вблизи тела клетки делится на два – центральный и периферический; центральный отросток, являющийся аксоном, направляется в центральную нервную систему; периферический, являющийся дендритом, заканчивается рецептором на периферии тела.
По функции различают следующие типы нейронов: Чувствительный нейрон Вставочный нейрон 1. Двигательный нейрон – переносит импульс к 2. 3. исполнительному органу (к мышце). Чувствительный нейрон – переносит импульс от рецептора в спинной или головной мозг. Вставочный нейрон – осуществляет взаимосвязь нейронов между собой в пределах спинного и головного мозга. Двигательный нейрон
Расположение нейронов в рефлекторной дуге Спинной мозг Рецепторы кожи Чувствительный нейрон Вставочный нейрон Двигательный нейрон Мышца
Рецепторы – Экстерорецепторы воспринимают внешние раздражения (боль, температуру, осязание, давление), располагаются в наружных покровах тела человека – в коже и слизистых; – Проприорецепторы воспринимают раздражения в аппарате движения – в мышцах, сухожилиях, связках и суставах (чувство положения тела в пространстве); – Интерорецепторы воспринимают раздражения, идущие от внутренних органов и сосудов (реакция на изменения химического состава, давления, температуры и пр. ).
Нервная система функционирует по принципу рефлекса, формируя рефлекторные кольца, а для сложных двигательных процессов – рефлекторные дуги. Рефлекс – это ответная реакция организма на раздражение (от лат. reflexus – отраженный). Простейшая рефлекторная дуга у человека состоит из трех нейронов. II I III Рефлекторная дуга I нейрон – чувствительный, начинается от рецептора. Он всегда псевдоуниполярный и его тело лежит в ганглии (узле). II нейрон – вставочный, переносит импульс на третий нейрон. III нейрон – двигательный, переносит импульс к мышце.
Схема коленного рефлекса Проприорецептор – сухожильный орган Гольджи
Физиология нейронов Мембранный потенциал покоя На мембране любой клетки существует разность потенциалов. Na+ Потенциал действия Все электрические сигналы являются результатом временного изменения электрических токов, текущих в клетку и из клетки
Проведение нервного импульса в простой рефлекторной дуге В живых объектах все электрические токи обеспечиваются движением ионов через мембрану. Сухожильный рефлекс
Механизм передачи нервного импульса по аксону (нервному волокну) Безмиелиновое волокно По безмиелиновому волокну передача нервного импульса сводится к последовательной деполяризации мембраны аксона и передаче потенциала действия вдоль нервного волокна. В миелиновом волокне Миелиновое волокно деполяризация происходит только в области перехватов Ранвье, так как миелиновая оболочка выполняет роль изолятора. Поэтому по волокну протекает электрический ток, перескакивая от одного перехвата к другому, – сальтаторная передача импульса. Поскольку электрический ток движется гораздо быстрее, чем постепенная волна деполяризации, то скорость проведения импульса по миелиновому волокну выше, чем по безмиелиновому (примерно в 50 раз).
Проведение потенциала действия в безмиелиновых (А) и миелиновых (Б) нервных волокнах
Рефрактерность объясняет возникновение «нервного» утомления.
Нервно-мышечное проведение импульса Схема простых бессознательных рефлексов Простейшие бессознательные двигательные рефлексы могут замыкаться на уровне одного сегмента спинного мозга (коленный рефлекс), более сложные – захватывают несколько сегментов.
Мышцы иннервируются двигательными нервами (мотонейронами), передающими из ЦНС моторные команды, чувствительными нервами, несущими в ЦНС информацию о напряжении и движении мышц, и симпатическими нервами, влияющими на обменные процессы в мышце.
Нервно-мышечный синапс (моторная бляшка заканчивается на мышечном волокне) Нервно-мышечный синапс относится к нейрохимическим синапсам, медиатором в котором является ацетилхолин.
Двигательная единица Структурно-функциональной единицей мышцы является двигательная единица, состоящая из мотонейрона спинного мозга, его аксона (нервного волокна) и иннервируемых им мышечных волокон.
Особенности двигательной иннервации Двигательные единицы (ДЕ) малых мышц содержат малое количество мышечных волокон, крупных – большое (напр. , в ДЕ мышцы глаза – 3 -6 волокон, в мышцах пальцев рук – 10 -25, а в икроножной мышце – около 2 000 мышечных волокон).
При единичном надпороговом раздражении двигательного нерва, возбуждение мышечного волокна сопровождается одиночным сокращением. Если интервалы между нервными импульсами короче, чем одиночное сокращение, то возникает явление суперполяризации и наблюдается сложная форма сокращения – тетанус.
Закон «все или ничего» Сокращение целой мышцы зависит от формы сокращения отдельных двигательных единиц (ДЕ) и их координации во времени. Возбуждение мотонейрона вызывает одновременное сокращение всех входящих в эту единицу мышечных волокон. Чем больше двигательных единиц сокращается, тем больше сила сокращения всей мышцы. При частой и длительной импульсации мотонейрона расход ацетилхолина в нервно-мышечных синапсах превышает его пополнение, в результате чего нарушается проведение импульса через синапс. Этот процесс лежит в основе периферических механизмов утомления, особенно при длительной и неправильно организованной мышечной работе.
Схема сроков миелинизации основных функциональных систем в мозге Возраст Миелинизация нервных структур Месяцы Плод 5 Двигательные корешки Пирамидные пути Передняя центральная извилина Чувствительные корешки Медиальная петля Постцентральная извилина Зрительный путь Слуховой путь Спинно-мозжечковый путь Ножки мозжечка Лобно-мостовой путь Полосатое тело Ретикулярная формация Ассоциативные волокна 6 7 8 9 1 Годы Ребенок 2 3 6 9 12 2 3 4 7 18 25
Спасибо за внимание