Тема 5. Сцепленное наследование.

Скачать презентацию Тема 5.  Сцепленное наследование. Скачать презентацию Тема 5. Сцепленное наследование.

Закон Моргана.ppt

  • Количество слайдов: 20

>  Тема 5.  Сцепленное наследование.  Генетический эффект  кроссинговера.  Построение Тема 5. Сцепленное наследование. Генетический эффект кроссинговера. Построение генетических карт

>В начале XX в. , когда генетики стали проводить  множество экспериментов по скрещиванию В начале XX в. , когда генетики стали проводить множество экспериментов по скрещиванию на самых различных объектах (кукуруза, томаты, мыши, мушки дрозофилы, куры и др. ), обнаружилось, что не всегда проявляются за кономерности, установленные Менделем. Например, не во всех парах алле лей наблюдается доминирование. Вместо него возникают промежуточные ге нотипы, в которых участвуют оба аллеля. Обнаруживается также много пар генов, не подчиняющихся закону независимого наследования генов, особенно если пара аллельных генов находится в одной и той же хромосоме, т. е. гены как бы сцеплены друг с другом. Такие гены стали называть сцепленными.

>Механизм наследования сцепленных генов, а также местоположение сцепленных генов установил американский биолог Томас Морган Механизм наследования сцепленных генов, а также местоположение сцепленных генов установил американский биолог Томас Морган (1865 1945). Он показал, что закон независимого наследования, сформулированный Менделем, действителен только в тех случаях, когда гены, несущие данные независимые признаки, локализованы в разных негомологичных хромосомах. Если же гены находятся в одной и той же хромосоме, то наследование признаков происходит совместно, т. е. сцепленно. Это явление стали называть сцепленным наследованием, а также законом сцепления или законом Моргана.

>Закон сцепления гласит: сцепленные гены, располагающиеся в одной хромосоме, наследуются совместно.  Все гены, Закон сцепления гласит: сцепленные гены, располагающиеся в одной хромосоме, наследуются совместно. Все гены, входящие в одну хромосому, наследуются вместе.

>Примеров сцепленного наследования генов известно очень много. Например, у кукурузы окраска семян и характер Примеров сцепленного наследования генов известно очень много. Например, у кукурузы окраска семян и характер их поверхности (гладкие или морщинистые), сцепленные между собой, наследуются совместно. У душистого горошка (Lathyrus odoratus) сцепленно наследуются окраска цветков и форма пыльцы.

>Сцепленные гены располагаются на одной и той же хромосоме.  Все гены одной хромосомы Сцепленные гены располагаются на одной и той же хромосоме. Все гены одной хромосомы образуют единый комплекс — группу сцепления. Они обычно попадают в одну половую клетку — гамету и наследуются вместе. Поэтому гены, входящие в группу сцепления, не подчиняются третьему закону Менделя о независимом наследовании. Однако полное сцепление генов встречается редко. Если гены располагались близко друг к другу, то они могли долго оставаться в одной хромосоме и потому будут передаваться по наследству вместе, а если расстояние между двумя генами на хромосоме велико, то существует большая доля вероятности, что они могут разойтись по разным гомологичным хромосомам. В этом случае гены подчиняются закону независимого наследования.

>Основным объектом, с которым работали Т. Морган и его ученики, была плодовая мушка дрозофила, Основным объектом, с которым работали Т. Морган и его ученики, была плодовая мушка дрозофила, имеющая диплоидный набор из 8 хромосом. Эксперименты показали что гены, находящиеся в одной хромосоме при мейозе попадают в одну гамету, т. е. наследуются сцепленно. Это явление получило название закона Моргана.

>У любого организма генов значительно больше, чем хромосом. Например, у человека имеется около миллиона У любого организма генов значительно больше, чем хромосом. Например, у человека имеется около миллиона генов, а хромосом всего 23 пары. Следовательно, в одной хромосоме размещается в среднем несколько тысяч генов. Гены, расположенные в одной хромосоме, называют сцепленными. Все гены этой хромосомы образуют группу сцепления, которая при мейозе обычно попадает в одну гамету. Значит, гены, входящие в одну группу сцепления, не подчиняются закону независимого наследования, а при дигибридном скрещивании вместо ожидаемого расщепления по фенотипу в соотношении 9: 3: 3: 1 дают соотношение 3: 1, как при моногибридном скрещивании.

>В качестве объекта он использовал плодовую муху дрозофилу. У дрозофилы окраску тела и длину В качестве объекта он использовал плодовую муху дрозофилу. У дрозофилы окраску тела и длину крыльев определяют следующие пары аллелей: А серое тело, а черное тело, В длинные крылья, b зачаточные крылья. Гены, отвечающие за окраску тела и длину крыльев, находятся в одной паре гомологичных хромосом и наследуются сцепленно. При скрещивании дрозофилы с серым телом и длинными крыльями с дрозофилой, имеющей черное тело и зачаточные крылья, все гибриды первого поколения имели серую окраску тела и длинные крылья. При дальнейшем скрещивании между собой гибридных мух первого поколения в F 2 не произошло ожидаемого расщепления по фенотипу 9: 3: 3: 1. Вместо этого в F 2 были получены мухи с родительскими фенотипами в соотношении примерно 3: 1. Появление в F 2 двух фенотипов вместо четырех позволило сделать вывод, что гены окраски тела и длины крыльев дрозофил находятся в одной хромосоме. Так был установлен закон Т. Моргана: гены, расположенные в одной хромосоме, наследуются совместно сцепленно, то есть наследуются преимущественно вместе.

>Однако при дигибридном скрещивании при сцепленном наследовании признаков не всегда появляются особи только двух Однако при дигибридном скрещивании при сцепленном наследовании признаков не всегда появляются особи только двух фенотипов. Иногда появляются особи еще двух фенотипов с перекомбинацией (новым сочетанием) родительских признаков: серое тело зачаточные крылья, черное тело длинные крылья. (Особей с такими фенотипами немного около 8, 5% каждого типа. ) Почему же нарушается сцепление генов и появляются особи с новыми фенотипами? Было установлено, что сцепление генов может быть полным и неполным. Полное сцепление наблюдается в том случае, если скрещиваются серый самец с длинными крыльями и самка с черным телом и зачаточными крыльями. Расщепление по фенотипу в этом случае будет 1: 1, то есть наблюдается полное сцепление генов в одной хромосоме.

>При скрещивании серой длиннокрылой самки с самцом, имеющим черное тело и зачаточные крылья, расщепление При скрещивании серой длиннокрылой самки с самцом, имеющим черное тело и зачаточные крылья, расщепление по фенотипу будет примерно 41, 5: 8, 5, что характеризует неполное сцепление. Причина нарушения сцепления заключается в том, что в ходе мейоза происходит кроссинговер и гомологичные хромосомы обмениваются своими участками. В результате гены, расположенные в одной из гомологичных хромосом, оказываются в другой хромосоме. Возникают новые сочетания признаков. У самцов дрозофил в мейозе кроссинговер не происходит, поэтому при скрещивании серого длиннокрылого самца дрозофилы с рецессивной самкой с черным телом и зачаточными крыльями сцепление будет полным. Неполное сцепление наблюдается в том случае, если самка гетерозиготна, а самец гомозиготен. В данном примере кроссинговер происходит примерно у 17% самок.

>Таким образом, если не происходит перекреста хромосом и обмена генами, то наблюдается полное сцепление Таким образом, если не происходит перекреста хромосом и обмена генами, то наблюдается полное сцепление генов. При наличии кроссинговера сцепление генов бывает неполным. Благодаря перекресту хромосом возникают новые сочетания генов и признаков. Чем дальше друг от друга расположены гены в хромосоме, тем больше вероятность перекреста между ними и обмена участками хромосом. Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах: единице расстояния между генами, находящимися в одной хромосоме, соответствует 1% кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид.

>Сравните результаты скрещивание дрозофил:  а) Полное сцепление без кроссинговера б) С частотой кроссинговера Сравните результаты скрещивание дрозофил: а) Полное сцепление без кроссинговера б) С частотой кроссинговера равной 17 %

> Результатом исследований Т. Х. Моргана стало создание им  хромосомной теории наследственности: Результатом исследований Т. Х. Моргана стало создание им хромосомной теории наследственности: 1. Гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов, причем набор генов каждой из негомологичных хромосом уникален; 2. Каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены; 3. Гены расположены в хромосомах в определенной линейной последовательности; 4. Гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов; 5. Сцепление генов может нарушаться в процессе кроссинговера; это приводит к образованию рекомбинантных хромосом; 6. Частота кроссинговера является функцией расстояния между генами: чем больше расстояние, тем больше величина кроссинговера (прямая зависимость); 7. Каждый вид имеет характерный только для него набор хромосом кариотип.

>Генетические карты хромосом — это схема взаимного расположения и относительных расстояний между генами определенных Генетические карты хромосом — это схема взаимного расположения и относительных расстояний между генами определенных хромосом, находящихся в одной группе сцепления. Впервые в 1913 — 1915 годах на возможность построения генетических карт хромосом указывают Т. Морган и его сотрудники. Они экспериментально показали, что основываясь на явлениях сцепления генов и кроссинговера можно построить генетические карты хромосом. Возможность картирования основана на постоянстве процента кроссинговера между определенными генами. Генетические карты хромосом составлены для многих видов организмов: насекомых (дрозофила, комар, таракан и др. ), грибов (дрожжи, аспергилл), для бактерий и вирусов.

>Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. В Генетические карты человека используются в медицине при диагностике ряда тяжелых наследственных заболеваний человека. В исследованиях эволюционного процесса сравнивают генетические карты разных видов живых организмов. Помимо генетических, существуют и другие карты хромосом. Физическая карта – графическое представление порядка следования физических маркеров (фрагментов молекулы ДНК), расстояние между которыми определяется в парах нуклеотидов. Рестрикционная карта – вид физической карты, на которой указан порядок следования и расстояния между сайтами расщепления ДНК рестриктазами (обычно участок узнавания рестриктазы 4 6 п. н. ). Маркерами этой карты являются рестрикционные фрагменты/сайты рестрикции.

>Генетическое картирование  это определение группы сцепления и положения картируемого гена относительно других генов Генетическое картирование это определение группы сцепления и положения картируемого гена относительно других генов данной хромосомы. Чем больше генов известно у данного вида, тем точнее результаты этой процедуры. Как правило, число генов в группах сцепления зависит от линейных размеров соответствующих хромосом. Однако, протяженные области конститутивного гетерохроматина (в районе центромеры и теломерных участков) практически не содержат генов и, таким образом, нарушают эту зависимость. На первом этапе картирования определяют принадлежность гена к той или иной группе сцепления. Для локализации вновь возникшей мутации необходимо располагать набором маркерных генов для каждой хромосомы. Картирование мутации основывается на анализе ее сцепления с этими маркерами. Например, если интересующая нас мутация наследуется независимо от маркеров второй хромосомы, делается вывод о ее принадлежности к другой группе сцепления.

>Второй этап картирования подразумевает определение положения гена на хромосоме. Для этого подсчитывают расстояние между Второй этап картирования подразумевает определение положения гена на хромосоме. Для этого подсчитывают расстояние между этим геном и уже известными, маркерными генами. Для подсчета генетических расстояний проводят специальные скрещивания, в потомстве которых учитывают частоты кроссоверных и некроссоверных особей. Предполагается, что расстояние между двумя генами пропорционально частоте кроссинговера между ними. Следует иметь в виду, что, чем дальше расположены друг от друга гены, тем чаще между ними происходят множественные перекресты и тем больше искажается истинное расстояние между этими генами.

>Метод цитологических карт основан на использовании хромосомных перестроек. При облучении и действии других мутагенов Метод цитологических карт основан на использовании хромосомных перестроек. При облучении и действии других мутагенов в хромосомах часто наблюдаются потери (делеции) или вставки (дупликации) небольших фрагментов, сравнимых по величине с одним или несколькими локусами. Например, можно использовать гетерозиготы по хромосомам, одна из которых будет нести группу следующих друг за другом доминантных аллелей, а гомологичная ей — группу рецессивных аллелей тех же генов ABCDE/abcde. Если в хромосоме с доминантными генами произошла утрата отдельных генов, например DE, то у гетерозиготы ABC/abcde будут проявляться рецессивные признаки de. На этом принципе основан метод перекрывающихся делеции, используемый при построении цитологических карт.

>Картирование генов у человека Картирование генов у человека