8c287dd19a46c0809d93c9a6520f13cd.ppt
- Количество слайдов: 44
Shifting Sand: Impacts of Technology in Higher Education George Watson ghw@udel. edu Department of Physics and Astronomy College of Arts & Science University of Delaware
The Way It Was. . . 1973 graphing calculators, laptops, gigabytes and gigahertz Computation 2002
The Way It Was. . . 1973 e-mail, voice-mail, chatrooms, FAX, pagers, cell phones instant messaging, wireless connectivity Communication 2002
The Way It Was. . . 1973 Online Information: web catalogs, networked databases, Britannica Online, online newspapers, course websites, CMS Collections 2002
Teaching and learning in the stormy “seas”: Computation and Calculation Communication and Collaboration Collections and Connections The Perfect Storm?
The question before us: Given the amazing advances in technology, the dramatic change in the firstyear experience, and knowing what we know about our students, How can we best proceed in our classrooms? 19 March 2018
One possible answer: Problem-Based Learning The principal idea behind PBL is… that the starting point for learning should be a problem, a query, or a puzzle that the learner wishes to solve. (Bould, 1985: 13) 19 March 2018
What is Problem-Based Learning? PBL is an instructional method that challenges students to “learn to learn, ” working cooperatively in groups to seek solutions to real world problems. PBL prepares students to think critically and analytically, and to find and use appropriate learning resources. 19 March 2018
What are the common features of PBL? Learning is initiated by a problem. Problems are based on complex, real-world situations. Information needed to solve problem is not initially given. Students identify, find, and use appropriate resources. Students work in permanent groups. Learning is active, integrated, cumulative, and connected. 19 March 2018
PBL: The Process Students are presented with a problem. They organize ideas and previous knowledge. Students pose questions, defining what they know and do not know. Students assign responsibility for questions, discuss resources. Students reconvene and explore newly learned information, refine questions. 19 March 2018
The Problem-Based Learning Cycle Overview Mini-lecture Group Discussion Whole Class Discussion Preparation of Group “Product” 19 March 2018 Problem, Project, or Assignment Research Group Discussion
The principal idea behind PBL is? A. PBL challenges students to learn. B. Learning is initiated by a problem. C. Students work in permanent groups. Think/ pair/ share 19 March 2018
“Marriage” of PBL and technology PBL and active learning The web and instructional technology How can technology aid student learning in a PBL course? How can PBL aid students in using technology to learn?
Utilizing Online Resources Web Sites and Web Pages Information for solving problems Ingredients for writing problems Inspiration for designing problems
Ingredients for writing problems 19 March 2018
Inspiration for designing problems 19 March 2018
Information for solving problems 19 March 2018
Utilizing Online Resources Web Sites and Web Pages Ingredients for writing problems Borrowing images Creating images Background facts from other sites with scanners, from networked digital cameras databases
Utilizing Online Resources Web Sites and Web Pages Film and TV Quack websites for scripts International for “raw” Online regional and characters newspapers for material newspapers for global view local perspective Inspiration for designing problems
Utilizing Online Resources Old thinking: Web is full of Sites and The web Web Pages misinformation and biased representation Stay away! Evaluating online resources critically New thinking: Engage and develop critical thinking skills. Information for The Internet Challenge! solving problems Executing web searches effectively
Silicon, Circuits, and the Digital Revolution SCEN 103 at the University of Delaware http: //www. physics. udel. edu/~watson/scen 103/ 19 March 2018
The course: SCEN 103 in Spring 2000 was an Honors colloquium designed to introduce first-year students to some of the science behind high technology. Designed to promote scientific and computer literacy and awareness, SCEN 103 gives students an opportunity to leverage their interests in everyday devices and high-tech objects into a study of fundamental science concepts. Live demonstrations, in-class group explorations of technology applications, and daily work with the Internet are essential elements of SCEN 103. 19 March 2018
Broad Course Objectives: Analyze simple electrical circuits to assess their function and effectiveness. State and describe fundamental scientific principles underlying modern electronic devices. Explain the basic operation of electrical circuits, simple semiconductor devices, and integrated circuits. Identify the contributions of science and technology to everyday life. 19 March 2018
A Problem-Based Learning Approach to Simple Electrical Circuits Incorporating PBL problems, Other collaborative exercises, and Hands-on laboratory exercises. 19 March 2018
PBL #1 Crossed Circuits Two roommates argue about perceived use of electrical energy. Who should pay more towards the utility bill? Energy = power x time 19 March 2018
PBL #2 A San Francisco Treat Electrical wiring plans are formulated for a building conversion in San Francisco using floorplans from “This Old House”. Parallel circuits Household wiring 19 March 2018 Power ratings of appliances
Lab #3 Batteries and Bulbs Students work from the simplest possible circuit to the challenging circuit on the left and its companion on the right. Series and parallel combinations 19 March 2018
Motivation for This Project Faster, cheaper ‘what if? ’ changes. Anywhere, anytime accessibility to ‘lab’. Wireless technology for collaborative learning. When hands-on experiences in a physical laboratory are not available, computer simulations are often the next best option. For some topics, computer simulations can provide an environment for active learning that is just as rewarding as the traditional laboratory. 19 March 2018
Implementation of This Project Java. Script and Java applets are often employed to implement computer simulations for learning that can be accessed over the web. Often overlooked are other software solutions that run from suitably configured web browsers -- Macromedia Flash is one such approach. We have created a simple circuit simulator written in Flash that provides an interactive experience for introductory students of electricity. 19 March 2018
Features of the Circuit Simulator The current version provides a prototyping workspace drag-and-drop selection of resistors and batteries multimeters that can be configured to display current and/or voltage for each circuit element wire cutters and wire to complete and reconfigure circuits to carry out simulated experiments. a written and audio introduction to its use. 19 March 2018
19 March 2018 As initially presented to the students
19 March 2018 Running a circuit simulation…
Demonstration http: //www. udel. edu/present/showcase/watson/ 19 March 2018
Problem-Based Learning and Physics: Developing problem solving skills in all students NSF DUE 00 -89408 CCLI-EMD The problem-based learning (PBL) program initiated at the University for reforming undergraduate science teaching is being expanded beyond the University by the development of instructional models and materials made accessible to faculty worldwide through an online clearinghouse. The project is developing a database of problems, instructional models, evaluation tools, and web-based resources that effectively incorporate PBL across the content framework of introductory undergraduate physics courses. Materials are being collected and reviewed for a wide variety of introductory physics courses, for both science majors and non-science majors, across all levels of instruction and class enrollment. In addition to collecting existing problems and material, the project is implementing problem-writing workshops as an important element in developing the collection of PBL materials needed to cover the different curricula of physics at the college level. Selected clearinghouse problems will also be adapted to the high school setting.
PBL 2002 Conference www. udel. edu/pbl 2002
Shifting Sand: Impacts of Technology in Higher Education Anytime, anyplace simulations Wireless computing In-class interactivity Web. CT
19 March 2018
19 March 2018
Interactive Student Response Systems www. educue. com 19 March 2018
19 March 2018
19 March 2018
Advanced and emerging technologies in higher education www. udel. edu/cte/techgrants. htm Using Palm Pilots to Enhance Student Learning in Telehealth 3 D Visualization for Macromolecules for Effective Instruction… Use of Internet 2 to Bring Creative Arts into the Classroom Exploring Business Issues and Decision-Making with Videoconferenceing and Electronic Meeting Tools Timelines, Delivery of Historical Images by Varied Databases Electronic Portfolios as a Vehicle for Student Growth ERP Recording for Learning about Cognitive Neuroscience Asynchronous Learning Network Tool for Homework Assignments Writing, Structuring, and Designing Information for Screen Display
Shifting Sand: Impacts of Technology in Higher Education Computation and Calculation Communication and Collaboration Collections and Connections