
0ebff0884a66006ecbc8a470920cfbe8.ppt
- Количество слайдов: 61
SEMINAR DRAFT Concept of an accelerator complex of the National Laboratory of Armenia after A. I. Alikhanyan August 5, 2010, Yerevan
From General Recommendations of the In. Com. Ex • Yer. Ph. I is the unique Armenian Institution in its areas, • Yer. Ph. I offers a unique basis for further development of science and science intensive technologies in Armenia. • Nuclear Physics is important for the future of Armenia for it crucial dependence on nuclear energy and new economic / scientific bases of nuclear medicine, environmental and radiation monitoring, • One exciting option for a bright scientific / technological / economic future of Armenia would be the creation of a dedicated facility (accelerator for protons and heavy ions) to be used for investigations in fundamental nuclear physics, as well as in neighboring sciences and in applied researches, • It is preferable to give to the Institute the status of a National Laboratory of Armenia
For NLA Why hadrons… Instead of electrons?
Heavy ion physics: very early in 60 th JINR LBL Pioneers
When was shown that nucleus may have: a very high temperature T~ few Me. V gigantic deformation furious rotation spin up to 66 h axes up to 3: 1 and survive…………
Heavy ion physics: GANIL MSU ANL LBL from the beginning to now… ORNL BNL A&M GSI INFN IPN CERN INFN JINR NLA Pioneers Heavy ion accelerators Heavy Ion National Laboratories Heavy Ion Colliders RIKEN
im protons Nuclei and its Properties sl s it a m stable nuclei - about 300 photonuclear reactions unstable nuclei - about 3000 exotic nuclei heavy ion induced reactions heavy nuclei proton drip line Bp=0 neutron drip line Bn=0 neutrons
40 12
Cooled beams PET-diagnostics 110 min protons 2 min 10 min 20 min Source neutrino oscillations Detector Distance CERN 0. 8 s m k 500 Gran Sasso Underground Laboratory Gran Sasso 500 km Fermilab Minesota 500 miles NLA 6 He→ 6 Li+e-+ν Baksan “di-neutron” 400 km discovery in halo-nucleus 6 He FLNR 2001
From Nuclear Diagnostics to Nuclear Therapy
PET - Tomograph 18 F-FDG import from the Institute of Nuclear Physics in Prague ECAT EXACT HR+ (Siemens)
Inject Beams required: Armenia Ring / RIB
Should we have a beam of the radioactive ions?
6 He – production
Hot Nuclei Inject Nuclear thermal conductivity Nuclear stopping power up to 3 Ge. V/fm 3 p → quarks + gluons Ring Excitation energy up to 1000 Me. V and even more
Ring
Space Physics and Space Technologies
Ring the solar system outside the solar system Pb For acceleration Th-U
Testing electronic components Development of radiation resistant electronics is of primary importance nowadays. The hazards of space radiation pose significant problems in a long duration space flight. In particular, the radiation hardiness of the materials used in electronics equipments plays a large role in determining the useful lifetime of the satellite, probe, or robot. Upsets in electronics may result in fatal faults in space missions and many-billion losses
The chamber for irradiation of microchips (U 400, FLNR) Inject • Irradiation in vacuum • Irradiation with low ion fluences (103 – 105 cm-2) • Angle of incidence can be varied • Functioning of microchips is being tested during irradiation Ring
Heavy ions – a powerful tool for studies of fundamental problems of radiation genetics Clustered DNA damage Fragment of DNA Consequences of Galactic heavy ions action ü Induction of cancer; ü Formation of gene The flux of C–Fe group ions and structural mutations; 107 cm-2 year-1 functions: ü Violation of visual ~ damage of retina and cataract induction; ü Central Nervous System violation 22
Condensed Matter and Material Science
Ion stopping power Inject
Микрометры Ранняя диагностика рака, 4 -7 мкм Системы очистки воды, 1 мкм Плазмаферез, очистка воды, 0, 4 мкм etchant Pore density: up to 109/cm 2 Production: up to 1 2/s m Молекулярные сенсоры < 20 нм Нанометры etchant
QED Quantum Electrodynamics
Ring Heaviest atoms in QCD (point charge) Zmax=1/α=137 where α is fine-structure constant (finite size) Zmax≈176
Should we have a relativistic beam of 238 U?
Our interests in the wide energy range • 0. 01 – 0. 1 Me. V·A • 1 - 10 Me. V·A • 10 – 100 Me. V·A Plasma physics Solid st. physics Nuclear structure Nuclear fusion Surface modifications New material structures at the level from μm to nm Isotope production Nuclear fragmentation Exotic nuclei, RIB • 100 – 1000 Me. V·A Relativistic nuclear physics, Particle production, Anti- particles & anti-nuclei Radiation resistant electronics (space) Radiobiology Nuclear therapy
Our interests in the wide mass range also: Masses of the projectiles • 0. 01 – 0. 1 Me. V·A • 1 - 10 Me. V·A • 10 – 100 Me. V·A • 100 – 1000 Me. V·A Plasma physics Solid st. physics Surface modification 1 - 238 Nuclear structure Nuclear fusion New material structures 1 at the level from μm to nm Isotope production Nuclear fragmentation Exotic nuclei, RIB Radiation resistant electronics (space) - 238 1 - 100 Relativistic nuclear physics, 1 - 60 Particle production, Radiobiology 1 - 20 Anti- particles & anti-nuclei Nuclear therapy
Projectiles: RIB Radioactive Ion Beams 6 He, 11 C, 15 O, … p, He, . . 12 C…… 40=10 A·Me. V Fe, ……. . 238 U Ca, … 56 Emax SSC 120 Me. V 360·Me. V Emax=100 A·Me. V 2· 1014/s …. 5· 1012/s Emax=0. 1·q+/A Me. V 1. 2 Ge. V SC 4. 0 Ge. V Sector Separated Cyclotron Sector Cyclotron 0. 4·Me. V 1. 0·Me. V ECR Ion Source 1015/s …. 2· 1013/s
Electron Cyclotron Resonance Ion Source
DC 72 Cyclotron Magnet
Ion A/Z Ion Energy Ions Intensity Beam Power [Me. V/u] [µA] [pps] [W] Н -- 1 72 - 36 50 3× 1014 3600 - 1800 2 Н 1+ 2 30 - 15 100 6× 1014 3000 - 1500 D -- 2 30 - 15 50 3× 1014 3000 - 1500 3 Не 1+ 3 14 - 7 50 1. 5× 1014 1050 - 525 4 Hе 1+ 4 8, 6 - 4, 3 50 1. 5× 1014 860 - 430 7 Li 1+ 7 2, 8 - <2 3 6× 1012 19, 6 - 9, 8 12 C 3+ 4 8, 6 - 4, 3 20 2× 1013 344 - 172 14 N 3+ 4, 7 6, 2 - 3, 1 20 1, 7× 1013 248 - 124 16 O 4+ 4 8, 6 - 4, 3 20 1, 5× 1013 344 - 172 20 Ne 5+ 4 8, 6 - 4, 3 20 1, 2× 1013 344 - 172 20 Ne 3+ 6, 6 3, 2 - <2 20 1, 3× 1013 213 - 106 40 Ar 6+ 6, 6 3, 2 - <2 10 4× 1012 213 - 106 40 Ar 8+ 5 5, 6 - <2 10 3× 1012 124 - 62 84 Kr 12+ 7 2, 8 - <2 3 7× 1011 25 -12 129 Xе 18 + 7, 17 2, 7 - <2 1 1, 6× 1011 10 - 5
DC 200 Cyclotron Scheme 37
DC 200 Cyclotron Design Injection from ECR-source 38
Magnet
Space charge limits Ion charge 20 Ne 40 Ar 48 Са 50 Ti 54 Cr 58 Fe 64 Ni 70 Zn 76 Ge 82 Se Inensity Efficiency of acceptance and acceleration 30% 50% 50% Intensity on the target Ion/s 1. 1014 5. 1013 2, 5. 1013 4. 1013 2, 5. 1013 1. 1013 (? ) 50% 60% 60% 50% 60% 3. 1013 2, 5. 1012 2. 1012 (? ) 2. 1012 2. 1013 1. 1012 (? ) eμA Ions/s 3+ 7+ 8+ 8/9+ 9 9/10 10/11 11/12 12/13 13/14 150 300 150 75 125 125 100 50 3. 1014 1. 1014 5. 1013 8. 1013 5. 1013 2. 1013 86 Kr 96 Zr 100 Мо 116 Cd 1 124 Sn 136 Хе 150 Nd 14/15 16 16/17 19/20 20/21 22/23 25 150 10 10 6. 1013 4. 1012 3. 1012 10 150 3. 1012 4. 1013 160 Gd 26/27 60% 1. 1012 170 Er 28/29 60% 1. 1012 (? ) 192 Os 204 Hg 32 34 5 ых 1. 1012 60% 6. 1011 5. 1011 208 Pb 209 Bi 238 U 34/35 39/40 15 15 1 2. 1012 2, 2. 1012 1, 5. 1011 60% 60% 1. 1012 1. 1011
LINAC stable beams Very high intensity stable beams over a wide mass range GANIL ? About one or two order of magnitudes higher than present facilities National Laboratory of FRANCE Cyclotron DC 200 Today 136 Xe 208 Pb 6. 1011 pps 6. 1010 pps 238 U
RIB RING BOOSTER ? Separator target SSC C NA LI one Cyclotron R = 35 m SC Emax=1 Ge. V·A Me. V Q RF 12 Gev 40 Gev ECR Electron cooling?
11 C
Upgrade towards the Future Facility: Frequency (electrical power grid!) 0. 3 Hz→ 3 Hz Space charge reduction (vacuum!) U 73+ → U 28+ From the ECR-source for acceleration with the DC-200 238 U-charge is 39+/40+ Present GSI Facility Accelerator Parameters SIS Energies: Unilac < 15 Me. V/u SIS 1 -2 Ge. V/u ESR < 0. 8 Ge. V/u UNILAC FRS ESR
Cold Beam Synchrotron 12 C Injection energy… 30 Me. V·A Acceleration up to 140 -430 Me. V·A
Electron cooler Electron beam energy Total length Length of the cooled section Magnetic field Quality of the magnetic field Vacuum: Energy consumption : up to 250 k. V 10. 2 m 7 m 0. 1 - 0. 15 T 10 -4 10 -10 torr ~ 500 k. W
Two teams: from JINR and from NLA (former Yer. Ph. I) will work at the conceptual project of the new accelerator facility
Thank you very much!
Neutron Wall DEMON
DEMON Neutron Array
R-process simulation Courtesy: Gabriel Martinez-Pinedo Neutrons cm-2· Temperature in 109 K Ю. Ц. Оганесян. «Синтез и свойства сверхтяжелых ядер» . Семинар 28 апреля 2008 г. , Москва, .
Th-U SHE
Nucleosynthesis Hs β- U Th Pb Pu β- t ~ 1 -20 s waiting point β-
Calculated fission barrier heights Extended Thomas-Fermi plus Strutinsky integral method A. Mamdouh et al. , Nucl. Phys. A 679 (2001) 337 Z=108 Cyclamen 1966 α-decay β--decay EC SF
Assuming for the SH-nuclide TSF = 109 years the counting rate 1 decay / year from a 1000 -g metallic Os sample corresponds to the ratio Hs/Os: ~ 7· 10 -16 g/g or ~ 10 -23 g/g in the Earth's crust or in the meteorit’s matter Fréjus peak in comparison with previous attempts the sensitivity is increased by a factor ~ 109 Modane Ю. Ц. Оганесян. «Синтез и свойства сверхтяжелых ядер» . Семинар 28 апреля 2008 г. , Москва, .
End 1970’s : 2 reasons to meet - Transport ministry decided to dig a new road tunnel across the Alps between France and Italy - French and German physicists want to test SU 5 Grand Unified theory => Proton decays ? ? ? Need underground site 4000 m w-eq Y. Oganessian. Search for SHE in Nature. Sept. 11 -12, 2007, Plovdiv, Bulgaria