11d42fb6999aaa2b26627eea117492b7.ppt
- Количество слайдов: 35
Schwerpunkt Project SPINTRONICS-- 1285 (with J. von Delft LMU Munich QD 2010 Chernogolovka Russia-Israel cooperation IMOST (YG-I. Burmistrov) CHARGE – SPIN INTERPLAY IN QUANTUM DOTS I. Burmistrov, YG, M. Kiselev see also… B. Nissan, YG, M. Kiselev, I. Lerner in progress. . I. Burmistrov, YG, M. Kiselev, L. Medvedovsky – numerics A. Saha, A. Shnirman, A. Altland, YG – geometric phases
what the problem is why is it non-trivial what can we do about it …
QUANTUM DOT : ENERGY SCALES
Universal Hamiltonian Zero-mode interaction charging spin Kurland, Aleiner, Altshuler (2000) Aleiner, Brouwer, Glazman (2002) superconducting
Mesoscopic Stoner Instability
0 0 1 2 1 0. 5 paramagnetism mesoscopic Stoner instability macroscopic Andreev and Kamenev 1997 Kurland, Aleiner, Altshuler 2000 Aleiner, Brouwer, Glazman 2002 Stoner instability
MOTIVATION: conductance vs. gate voltage
MOTIVATION CALCULATE…. TUNNELING DENSITY OF STATES (GF) MAGNETIC SUSCEPTIBILITY (dc, ac) TRANSPORT THROUGH QD …… Alhassid and Rupp, PRL 91, 056801 (2003); Usaj, Baranger, PRB 67, 121308 (2003) Alhassid, Rupp, Kaminski and Glazman PRB 69, 115331(2004); Tureci and Alhassid, PRB 74, 165333 (2006); some aspects --analyzed exactly
MOTIVATION: conductance vs. gate voltage other quantities: J> 0. 5 near (& below) Stoner instability: Pd ~ 0. 8 Co impurities in Pd; Pnictides -- >0. 94
what the problem is why is it non-trivial what can we do about it …
detour… charging (Coulomb blockade) derivation of the Coulomb blockade employing functional bosonization Kamenev +YG 1996 Efetov + Tschersich 2003 Sedlmayr, Yurkevich, Lerner 2006
to calculate tunneling density of states needs GF. in imaginary time: Kamenev, YG 1996
interaction term decouple by Hubbard-Stratonovich transformation:
gauge transformation: winding number
Fermionic action Hubbard-Stratonovich Gauge Abelian action U(1) symmewtry functional bosonization
END OF detour… charging (Coulomb blockade) now do the same with spin exchange:
Hubbard-Stratonovich
charge+ spin Non-Abelian action ( SU(2) symmetry) various attempts: perturbation in spin anisotropy (Kiselev, YG, 2006) mapping into coupled stochastic eqs. (Kiselev, YG) ? ? ? Ising spin (Nissan, YG, Kiselev, Lerner) Geometric phase (Saha, Shnirman, Altland, Gefen)
what the problem is why is it non-trivial what can we do about it …
EXACT SOLUTION: action non-Abelian trick: Kolokolov (1990); Wei-Norman (1963)
time ordering
EXACT RESULTS Static susceptibility Pauli Curie Stoner inst.
EXACT RESULTS canonical partition function without
NON-TRIVIAL CHECKS :
New energy scale emerges : For for crucial dependence on specific realizations; may calculate
TDOS high T
Coulomb peak: dot degenerate between 4 e & 5 e e e 4 e 5 e
TDOS intermediate T exponentially suppressed osc. precession physics
with anisotropy– stronger effect
TDOS low T
SUMMARY: exact solution (non-monotonic TDOS; susceptibility; ) Possible Generalizations / Extensions • • anisotropic spin interactions ; finite B; susceptibility (d. c. + a. c. ) include superconductivity channel conductance: sequential tunneling; cotunneling. • disorder