cb94aff848ee323d505ed0d1e1c73550.ppt
- Количество слайдов: 21
Role of Recruitment in the Selection Process Job Analysis HR Planning (e. g. , Job requirements, KSAs (e. g. , # job openings, time frame) Job Description (e. g. , job duties, benefits, applicant qualifications) Recruitment (e. g, methods, processing of applicants) Selection (e. g. , assessment of KSAs
Yield Pyramid 5 Selection Ratio: Offers 10 # opening/hires ______ applicants Interviews 40 Hires Invites 60 Applicants Lower # is better for organizations: 240 Adapted from R. H. Hawk, The Recruitment Function (New York: American Management Association, 1967).
Attracting Applicants -- Recruitment Sources/Techniques (See pg. 164 for longer list of recruitment sources) • Newspaper advertising (quick, relatively inexpensive) • Trade publications (focused audience) In-House Pros: • Quicker • Cheaper • Know person’s qualifications • The applicant knows the company (e. g. , people, systems, resources) • In-house referrals (What are the pros and cons of this approach)? • On-site interviews (e. g. , college campuses) • Executive search firms In-House Cons: • Less diversity (demographics, ideas) • Potential interpersonal conflict (now a coworkers boss) • Need to fill an opening • Web sources (e. g. , Linked. In, Monster. com, Company web page) & Social Media (e. g. , links on Twitter, Facebook)
Other Recruitment Issues Recruiter Characteristics --- • Demographics (e. g. , gender, race, age) • Functional job area (similarity to job being recruited) • Personality (e. g. , warmth, enthusiasm, supportive, personable) Administration of Recruitment --- • Promptness of follow-up contact (short timeframe is best) • Amount of information requested of applicant (more information = less # of applicants) Include salary in recruitment ads?
Issue Affecting Recruitment (Applicant Interest) • Labor market (e. g. , unemployment rate) • Affirmative Action stance • Role of minority representation in job advertisements (attractiveness and compatibility perceptions) • Affirmative action policyvs. broad AA statement • Use of minority testimonials UWF is an Equal Opportunity/Access/Affirmative Action Employer and applications from women and minorities are especially encouraged.
Recruitment Content (Message) Content of the job advertisement --- • Amount of information required of applicants • Detail regarding job duties/requirements • Description of organization (e. g. , mission, core values) • Minority representation and AA policy • Positive and realistic description of jobs (RJPs) Should job salary be included in the advertisement?
Teaching Application Material Example • • Letter of intent Research Philosophy/Statement Teaching Philosophy/Statement Student (teaching) evaluations Copies of published articles Letter of recommendation (3) Resume Transcript
Organizational Emphasis on Recruitment • Money and time spent on recruiting by HR = 16% • Evaluation of recruitment effectiveness (often limited to criteria such as meeting deadlines) • Extent of recruiter training (most not trained; less than half of organizations used formal, standardized training programs) Source: Rynes, S. L. , & Boudreau, J. W. (1986). College recruiting in large organizations: Practice, evaluation, and research implications. Personnel Psychology, 39, 729 -757.
* Realistic Job Preview Effects PERCEPTION OF HONESTY AND CARING RJP VACCINATION OF EXPECTATIONS ROLE CLARITY COPING MECHANISMS DEVELOP FOR NEW JOBS SELF SELECTION INTERNAL FOCUS OF CONTROL COMMITMENT TO CHOICE OF ORGANIZATION NEEDS ARE MATCHED TO ORGANIZATIONAL CLIMATE JOB SATISFACTION JOB PERFORMANCE VOLUNTARY TURNOVER INVOLUNTARY TURNOVER TENURE IN THE ORGANIZATION
Realistic Job Preview!!! Men wanted for hazardous journey. Low wages, bitter cold, long hours of complete darkness. Safe return doubtful. Honour and recognition in event of success. ~ Ernest Shackleton's advertisement for 1914 Trans-Antarctic Expedition
* Test Utility Key Points Selection Ratio (SR) = Job openings n N Applicants Test Validity [Criterion-related]: The extent to which test scores correlate with job performance scores [Range is from 0 to 1. 0]
Proportion of “Successes” Expected Through the Use of Test of Given Validity and Given Selection Ratio, for Base Rate. 60. (From Taylor & Russell, 1939, p. 576) Selection Ratio (SR) Validity . 05 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 95 . 00. 05. 10. 15. 20 . 60. 64. 68. 71. 75 . 60. 63. 67. 70. 73 . 60. 63. 65. 68. 71 . 60. 62. 64. 67. 69 . 60. 62. 64. 66. 67 . 60. 62. 63. 65. 66 . 60. 61. 63. 64. 65 . 60. 61. 62. 63. 64 . 60. 61. 62. 63 . 60. 61. 62 . 60. 60. 61 . 25. 30. 35. 40. 45 . 78. 82. 85. 88. 90 . 76. 79. 82. 85. 87 . 73. 76. 78. 81. 83 . 71. 73. 75. 78. 80 . 69. 71. 73. 75. 77 . 68. 69. 71. 73. 74 . 66. 68. 69. 70. 72 . 65. 66. 67. 68. 69 . 63. 64. 65. 66 . 62. 63. 64 . 61. 62. 62 . 50. 55. 60. 65. 70 . 93. 95. 96. 98. 99 . 90. 92. 94. 96. 97 . 86. 88. 90. 92. 94 . 82. 84. 87. 89. 91 . 79. 81. 83. 85. 87 . 76. 78. 80. 82. 84 . 73. 75. 76. 78. 80 . 70. 71. 73. 74. 75 . 67. 68. 69. 70. 71 . 64. 65. 66 . 62. 63. 63 . 75. 80. 85. 90. 95 1. 00 . 99 1. 00 1. 00 . 96. 98. 99 1. 00 . 93. 95. 97. 99 1. 00 . 90. 92. 95. 97. 99 1. 00 . 86. 88. 91. 94. 97 1. 00 . 81. 83. 86. 88. 92 1. 00 . 77. 78. 80. 82. 84. 86 . 71. 72. 73. 74. 75 . 66. 66. 67. 67 . 63. 63. 63 Note: A full set of tables can be found I Taylor and Russell (1939) and in Mc. Cormick and Ilgen (1980, Appendix B).
Selection Ratio Example Mean Standard Criterion Score of Accepted Cases in Relation to Test Validity and Selection Ratio (From Brown & Ghiselli, 1953, p. 342) Validity Coefficient Selection Ratio. 00 . 05 . 10 . 15 . 20 . 25 . 30 . 35 . 40 . 45 . 05. 10. 15. 20. 25. 30. 35. 40. 45. 50. 60. 65. 70. 75. 80. 85. 90. 95 . 10. 09. 08. 07. 06. 05. 04. 04. 03. 02. 02. 01. 01 . 21. 18. 15. 14. 13. 12. 11. 10. 09. 08. 07. 06. 05. 04. 03. 02. 01 . 31. 26. 23. 21. 19. 17. 16. 15. 13. 12. 11. 10. 09. 07. 06. 05. 04. 03. 02 . 42. 35. 31. 28. 25. 23. 21. 19. 18. 16. 14. 13. 11. 10. 08. 07. 05. 04. 02 . 52. 44. 39. 35. 32. 29. 26. 24. 22. 20. 18. 16. 14. 12. 11. 09. 07. 05. 03 . 62. 53. 46. 42. 38. 35. 32. 29. 26. 24. 22. 19. 17. 15. 13. 11. 08. 06. 03 . 73. 62. 54. 49. 44. 40. 37. 34. 31. 28. 25. 23. 20. 17. 15. 12. 10. 07. 04 . 83. 70. 62. 56. 51. 46. 42. 39. 35. 32. 29. 26. 23. 20. 17. 14. 11. 08. 04 . 94 1. 04 1. 14 1. 25 1. 35 1. 46 1. 56 1. 66 1. 77 1. 87 1. 98 2. 08. 79. 88. 97 1. 05 1. 14 1. 23 1. 32 1. 41 1. 49 1. 58 1. 67 1. 76. 70. 77. 85. 93 1. 01 1. 08 1. 16 1. 24 1. 32 1. 39 1. 47 1. 55. 63. 70. 77. 84. 91. 98 1. 05 1. 12 1. 19 1. 26 1. 33 1. 40. 57. 63. 70. 76. 82. 89. 95 1. 01 1. 08 1. 14 1. 20 1. 27. 52. 58. 64. 69. 75. 81. 87. 92. 98 1. 04 1. 10 1. 16. 48. 53. 58. 63. 69. 74. 79. 84. 90. 95 1. 00 1. 06. 44. 48. 53. 58. 63. 68. 73. 77. 82. 87. 92. 97. 40. 44. 48. 53. 57. 62. 66. 70. 75. 79. 84. 88. 36. 40. 44. 48. 52. 56. 60. 64. 68. 72. 76. 80. 32. 36. 40. 43. 47. 50. 54. 58. 61. 65. 68. 72. 29. 32. 35. 39. 42. 45. 48. 52. 55. 58. 61. 64. 26. 28. 31. 34. 37. 40. 43. 46. 48. 51. 54. 57. 22. 25. 27. 30. 32. 35. 37. 40. 42. 45. 47. 50. 19. 21. 23. 25. 27. 30. 32. 33. 36. 38. 40. 42. 16. 18. 19. 21. 22. 25. 26. 28. 30. 32. 33. 35. 12. 14. 15. 16. 18. 19. 20. 22. 23. 25. 26. 27. 09. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 05. 06. 07. 08. 09. 10. 11 . 00. 00. 00 . 55 . 60 . 65 . 70. 75 . 80 . 85 . 90 . 95 1. 00
* Regression Simple Regression Equation Multiple Regression y = a + bx y = a + b 1 x 1 + b 2 x 2 + b 3 x 3 …. . Test Score Predicted Score Slope y-intercept Predicted Score y-intercept Basic Process: • All applicants take every test. • Scores are weighted and combined to yield a predicted score for each applicant. • Applicants scoring above a set cutoff score are considered for hire Key Points: • Regression is a compensatory approach. That is, a high score on one test can compensate for a low score on another. • Best for tests to not relate to each other, but relate highly to the criterion. Weights
Compensatory Example How Four Job Applicants with Different Predictor Scores Can Have the Same Predicted Criterion Score Using Multiple Regression Analysis Applicant Score on X 1 2 Predicted Criterion Score A 25 0 100 B 0 50 100 C 20 10 100 D 15 20 100 Note: Based on the equation Y = 4 X + 2 X. 1 2
Independent Predictors r r 1 c Predictor 1 2 c Criterion Predictor 2 R 2 = r 2 1 c c. 12 For example, if r =. 60 and r 1 c +r 2 2 c =. 50, then 2 c 2 R c. 12 = 2 2 (. 60) + (. 50) =. 36 +. 25 =. 61
Interrelated Predictors Criterion r r 1 c 2 c r 12 Predictor 1 2 Predictor 2 2 r 1 c r 2 c - 2 r 1 c r 2 c 2 R c. 12 = 1 - r 2 12 For example, if the two predictors intercorrelate. 30, given the validity coefficients from the previous example And r =. 30, we will have 12 2 2 R c. 12 = 2 (. 60) + (. 50) - 2(. 30)(. 60)(. 50) 1 – (. 30)2 =. 47
* Multiple Cutoff Approach WAB Paper & Pencil Math Test Paper & Pencil Aptitude Test 100 x 100 Pass Cutoff score Fail 0 0 x Cutoff score Fail 0 Basic Process: • All applicants take every test. • Applicant must achieve a passing score on every test to be considered for hire. Key Point: A multiple cut-off approach can lead to different decisions regarding who to hire versus using a regression approach.
* Multiple Hurdle Approach Paper & Pencil Knowledge Test Pass Interview 100 xxxxx xxx Fail Eliminated from the selection process Work Sample Test Pass 100 xxxxx xx Cutoff score 0 Fail Eliminated from the selection process xxx 0 100 xxx Pass Cutoff score xxx Fail Eliminated from the selection process Cutoff score 0 Basic Process: • All applicants take the 1 st test. • Pass/fail decisions are made on the 1 st and subsequent tests and only those who pass can continue on to the next test [a sequential process]. Key Point: Useful when a lengthy, costly, and complex training process is required for the position.
Banding Basic concept: Small differences in test scores might reasonably be due to measurement error. Therefore, you do not want small differences in test scores to trump all other consideration in ranking individuals in hiring. ” (p. 82).
* Banding (cont. ) SED Banding Types Both use the top score to establish the top of the band Fixed 98. . 94. 92. . 88. . . All those from the band are selected before those from the lower band Example of a band of 6 points Sliding 98. 94. . . 92. . . 88. . . Bands slide down after each person is removed from the top (bands re-established)
cb94aff848ee323d505ed0d1e1c73550.ppt