e67275212c41051ed8cfae5e2fd1488a.ppt
- Количество слайдов: 49
Research report on Life Cycle Cost Calculation O. Univ. Prof. Dipl. -Ing. Dr. techn. Hans Georg Jodl Institute of Interdisciplinary Construction Project Management Faculty of Civil Engineering Vienna University of Technology Университет по архитектура, строителство и геодезия (УАСГ) 2012 -11 -14
Content 1. Introduction 2. Calculation model LCC Bridge 3. Calculation model LCC Window 4. Calculation model LCC Metro station 5. Calculation model LCC Grooved Rail 6. Conclusion hans. jodl@tuwien. ac. at
1 2 Introduction 3 4 5 6
Life cycle cost • Life cycle divided in phases - periods • Holistic perception of cost trends over the whole expected service life • Cost groups during life cycle o o o Planning costs Building costs Cost of maintenance during utilisation Unexpected costs (optional) Cost of demolition at end of life cycle hans. jodl@tuwien. ac. at
Example of life cycle phases Planning phase Construction phase Utilisation phase Demolition phase Life cycle hans. jodl@tuwien. ac. at e. g. 5 years e. g. 3 years e. g. 70 years e. g. 2 years e. g. 80 years 5
Current targets of optimisation • Predominant investment during construction phase • Less investment during utilisation • Usual focus on optimisation for construction phase • Construction cost are only reliable cost available • Hence construction cost are reference base of further cost calculation hans. jodl@tuwien. ac. at
Planning strategy • Parameters for choice of system, quality of material and construction • Parameters impact level of expense during utilisation phase decisively • Targets of strategic planning of structure at budgeting of sustainable objects: to aspire maximum of service life to aim for minimum of costs to meet function without restriction hans. jodl@tuwien. ac. at
Sustainability and life cycle § Sustainability just a buzzword ? ? § Keeping house sustainable – when following the philosophy of 3 P • Sustainability is serving people People • Conserving living environment for the next generation Planet • Sustainable projects must earn money Profit hans. jodl@tuwien. ac. at 8
Structure of user specific cost • Acquisition cost – Financing cost – Total cost • Follow-up costs – Utilisation cost • • • Capital cost Capital consumption Taxes and dues Administration cost Operating expenses Maintenance cost – Demolition cost hans. jodl@tuwien. ac. at
Life cycle cost calculation • Life cycle cost are calculated for one single life span • Simplified calculation of LCC with only 3 input parameters: o CC [€]. . construction cost o m [a]. . theoretical service life o p [%]. . percentage of building cost CB • Calculation with Ø final value (accumulated to future) Ø present value (discounted to present) hans. jodl@tuwien. ac. at
Final value – present value Final (future) value calculation - accumulated Present (cash) value calculation - discounted hans. jodl@tuwien. ac. at
Roman arched bridge across river Tajo in Alcántara / Spain 1 Calculation model LCC Bridge 2 3 4 5 6
Aim of Research • Computer program for LCC calculation • Variables used as multiplying factors for • Theoretical utilization time • Percentages of annual maintenance cost • Two calculation models depending on appliance • Life cycle model with defined life span • LCC calculation with final value • LCC calculation with present value • Redemption model • presupposing unlimited life span and maintenance hans. jodl@tuwien. ac. at
Program targets • Creation of a consistently applicable tool for calculation of life cycle cost of a single bridge • Desired possibilities of application: • • • Comparison of bridges Comparison of variants Optimisation of planning process Checking of costs Redemption → change of upholder Leasing of bridges hans. jodl@tuwien. ac. at
Matching coefficients • Adaption of tabular values of redemption guideline using matching coefficients for special cases: o Variance of construction guidelines o Exceeding of normative defaults o Consideration of new material technology o Experimental projects o Accreditation of construction elements o Assessment of alternative offers • Quality criteria for planning bridges o Adaptability for road bridges o Additional criteria hans. jodl@tuwien. ac. at
Key table of redemption guideline 4 5 6 Rahmenartige Tragwerke (einschl. Gründungen) p [%] 0, 5 50 70 100 50 0, 6 0, 5 0, 8 2, 0 70 0, 8 70 70 100 1, 3 1, 1 1, 5 st 110 90 1, 2 0, 8 0, 5 40 50 40 2, 5 2, 0 2, 5 70 70 100 0, 8 1, 2 1, 5 130 110 70 0, 6 0, 5 0, 8 20 30 1, 5 1, 2 co 70 100 nt Tabu ag e o lar v f m alu ain es te of na nc e e. g Stru. re ctu inf ral or ele ce m d c en on ts für Geh- und Radwege ohne Schutzdach cre für Geh- und Radwege mit Schutzdach te für Straßen 3 Ta b of ula lif r v e s alu pa es n Widerlager, Flügelwände, Pfeiler, Stützen, Pylone (jeweils inkl. Gründung) 1. 1 aus Mauerwerk, Beton, Stahlbeton 1. 2 aus Pfahlwänden, Schlitzwänden 1. 3 aus Stahlspundwänden ohne Korrosionsschutz aus Stahlspundwänden mit Korrosionsschutz 1. 4 aus Stahl 1. 5 aus Holz Überbau: Tragkonstruktionen (Balken, Platten, Bögen, Kastenquerschnitte) 2. 1 aus Stahlbeton 2. 2 aus Spannbeton mit internen Spanngliedern aus Spannbeton mit externen Spanngliedern 2. 3 aus Stahl 2. 4 aus Stahl-Beton-Verbundkonstruktionen Stahltragwerke mit Betonplatte Walzträger in Beton Stahlträger in Beton mit Doppelverband (z. B. Preflexträger) 2. 5 aus Holz Geschlossene Rahmen, unten offene Rahmen, vergleichbare Rahmenkonstruktionen 3. 1 aus Stahlbeton 3. 2 aus Spannbeton 3. 3 aus Stahl Gewölbe (einschl. Gründungen) 4. 1 Mauerwerk, Beton 4. 2 Stahlbeton Wellstahlrohre einschl. Flügelwände und Gründungen Ausrüstung 6. 1 Ausrüstung C 1: umfasst 30 % der gesamten Ausrüstungskosten hans. jodl@tuwien. ac. at 6. 2 Ausrüstung C 2: umfasst 70 % der gesamten Ausrüstungskosten rce 2 Mai e. g. n struc t Bas e co ure urse m [a] pe 1 Bauliche Anlagen theoretische Nutzungsdauer m und %-Satz der jährlichen Unterhaltungskosten p Unterbau
Matching coefficient ► durability of structure Negative impact on structure may require adjustment of concrete quality. • Tabular values for concrete cover dconcrete = 3, 5 cm (usual) • Increase of concrete cover to 4, 0 cm (6, 0 cm) results in higher durability more concrete and reinforcement positive impact (life span) negative impact (cost) hans. jodl@tuwien. ac. at
Calculation model LCC Bridge • Comparison of different bridges • Commitment of parameters • Fixed interest rate of capitalisation 4 % p. a. • Fixed values depend on structure and construction • theoretical service life (life span) m [a] • annual maintenance cost Ca. M → percentage p [%] of building cost CB = CC + CAC hans. jodl@tuwien. ac. at
Construction cost CC • Calculation based on CONSTRUCTION COST CC COST only reliable well-established value • Construction cost CC contain: • Production cost of construction units • Related miscellaneous works • Clearance of traffic, site protection • Generation of execution documents, plans • Difficulties for third parties hans. jodl@tuwien. ac. at
Calculation with final value method Building cost CB = CC + CAC = CC* 1, 10 Administration cost CAC = 0, 10 * CC Annual maintenance cost Ca. M = CB * p = CC*1, 10 * p Dismantling cost CD = CDem + CAD = 0, 20 * CC + 0, 10 * CDem = CC* 0, 22 hans. jodl@tuwien. ac. at 20
Screen shot examples of cost schedule of interest cost of equipment interest cost schedule sum of costs construction cost annnual maintenance cost annual maintenance cost demolition cost no-interest cost schedule of no-interest cost of main structure hans. jodl@tuwien. ac. at schedule of no-interest cost of equipment schedule of total interest cost 21
Report of results Life cycle cost model results pdf. report data graphics data back-up present value 1953 Final value 2023 graphic data setting hans. jodl@tuwien. ac. at 22
Net weight Building movement Outside temperature, rain, wind, sun, noise Window movement Calculation model LCC Window Room temperature humidity 1 2 3 4 5 6
Windows in municipal housing § Life cycle consideration is strongly attracting notice § Window critical part of the building shell § Alu-material light, stiff, bearing, easy recycling § Coating long-lasting surface free of maintenance § Little maintenance only on changing parts § Intensive mechanical load rough usage in social flats rapid mechanical wear § Durability = service life + behaviour of user § Life cycle consideration decisive for evaluation of sustainability and intrinsic value hans. jodl@tuwien. ac. at 24
Acid laboratory test of 3 window types Tested frame material of windows: aluminium French window single frame Window single frame Casement window double frame hans. jodl@tuwien. ac. at 25
Calculation basis Life cycle period in years Tested windows Material Base + frame + glass Hold + fittings Gaskets Controlling period Window single frame French window single frame Casement window double frame Aluminium Wood-Alu Plastic 60 40 25 60 40 40 25 40 50 40 25 50 25 25 hans. jodl@tuwien. ac. at 26
LCC single frame window alu versus plastic positions ALUMINIUM-window single frame Base + frame + glass Hold + fittings Gaskets Controling period/Σ useful life cost [years] [€] 60 644 40 91 25 59 60 794 cost appearance cost ALUMINIUM-window no-interest single frame [€] Base + frame + glass 644 Equipment (Fr+Ho. F+Ga) 359 Wages (60 €/action) 180 Maintenance (0, 25%/year) 119 Sum after 60 years 1. 302 Present value 794 LCC interest rated [€] 6. 775 2. 097 457 491 9. 820 934 positions PLASTIC-window single frame Base + frame + glass Hold + fittings Gaskets Controling period/Σ useful life cost [years] [€] 25 411 25 91 25 59 25 561 cost appearance cost PLASTIC-window no-interest single frame [€] Base + frame + glass 1. 233 Equipment (Fr+Ho. F+Ga) 450 Wages (60 €/action) 120 Maintenance (2, 5%/year) 841 Sum after 60 years 2. 645 Present value 561 LCC interest rated [€] 6. 554 2. 392 326 3. 471 12. 743 1. 211 Change spare parts: wages (work) & material (equipment) all-inclusive. hans. jodl@tuwien. ac. at 27
LCC single frame window - ALU First change of window after 60 years Equipment: Fittings, hold (40 a), gaskets (25 a) hans. jodl@tuwien. ac. at 28
Comparison of frame-material LCC of single frame French window Wood Plastic Wood-Alu 26 ALU hans. jodl@tuwien. ac. at 29
LCC on example of a municipal flat (all material) Typical flat with 5 single frame windows and 1 single frame French window Wood Plastic ALU Wood-Alu 26 hans. jodl@tuwien. ac. at 30
Future requirements on windows • Guidelines are tightening requirements on windows • Future coefficient of heat transmission is very low: • • UW 1, 0 W/m²K Future increase of window weight expected because of multiple glazing and rising thickness of glass. Modern alu-windows are high quality systems with • Good heat insulation • Long service life • Practically free of maintenance Durability depends on combination of service life and user behaviour. Window material aluminium expecting to meet stronger future requirements reliably. hans. jodl@tuwien. ac. at
Calculation model LCC Metro station 1 2 3 4 5 6
Metro cost structure / maintenance hans. jodl@tuwien. ac. at 33
Cost composition LCC 1 2 Dimension: m 1, m², m³, to, piece, etc. hans. jodl@tuwien. ac. at 34
Prediction of quantity § Whereof is surface depending on? § Impact of structure on design … • • Upper level - deep level Crossing station Central platform - lateral platform … § Auxiliary means for quantity prediction • • Comparison of existing stations Statistical analysis Design guidelines Expert experience hans. jodl@tuwien. ac. at 35
Methods of quantity prediction Example - comparative analysis Example - statistic analysis: Lateral platform – central platform Statistical mean value of floor space required central platform 1. 167 m² (+ 30%) lateral platform 899 m² Area in m² 268 m² exceeded floor space required hans. jodl@tuwien. ac. at 36
Modelling step 1 – quantity estimation 1. Concretion Statistical analysis 2. Concretion Design guidelines Basic design Project advancement Project idea Comparison with existing stations Existing surfaces 1 hans. jodl@tuwien. ac. at 37
Model step 2 – cost development 2 Cost increase Interest yield Prediction required hans. jodl@tuwien. ac. at 38
Price index – exponential increase ? Standard wage index R 2 = 0. 9936 1000 8. 00% 7. 00% 6. 00% 5. 00% 4. 00% 3. 00% 2. 00% 1. 00% 0. 00% 2016 800 600 400 200 0 1956 1976 Building price index 1996 300. 00 R 2 = 0. 9877 250. 00 8. 0% 200. 00 6. 0% 150. 00 4. 0% 100. 00 2. 0% 50. 00 1974 10. 0% 1984 1994 2004 0. 0% 2014 Wholesale price index 200 10. 0% R 2 = 0. 8318 150 5. 0% 100 0. 0% 50 -5. 0% 0 1971 1981 1991 2001 2011 No exponential increase -10. 0% 2021 hans. jodl@tuwien. ac. at 39
Cost increase - exponentially or linear ? 1 € with 6% yield over 100 years has accrued to 339 € linear cost increase instead of exponential hans. jodl@tuwien. ac. at 40
Comparison - cost increase and interest yield Prediction of cost increase to 50 years (2060) 1200. 00 1000. 00 800. 00 Building price index housing Consumer price index Standard wage index Building price index high-building Building price index bridge Building price index mean value 2010 600. 00 400. 00 200. 00 1946 1966 1986 2006 2026 2046 2066 Interest yield trend 4. 000 € 0 % 14. 000 € Sum Supply Cleaning Maintenance Repair Material hans. jodl@tuwien. ac. at 4 % 41
Cumulativeness yield essential ? ? 35 a Jesus Christ’s bank account with 1, 0 € after 2012 years 5 a 30 a interest yield 1% → 1, 0*1, 012012= 494. 998. 691 € 100€ 200€ interest yield 4% → 1, 0*1, 042012= 18, 66733 € → 30 a 5 a 18. 667. 178. 019. 592. 100. 000 € 100€ 200€ 18. 667. 17827 EUR → time of investment equal !! → time of investment essential !! hans. jodl@tuwien. ac. at 42
Accuracy of the model ? LCC Model Data on demand of investor Literature Calculative approach Investor experience Decision support (floor covering) Research in progress hans. jodl@tuwien. ac. at 43
Calculation model LCC Rail 1 2 3 4 5 6
LCC Railway - existing problem § Abrasion of railway not clearly definable § Different investigation for metro and tram § Decisive impact-factors on LCC unknown hans. jodl@tuwien. ac. at 45
Focus of research § Influences of railway alignment (curve radius, shunting switches etc. ) § Internal influences: • number of passengers • number of lines on the same route • type of carriages used on the route (lowfloor/high-floor carriages) § External influences (road traffic) § Analysis of RAMS-parameter hans. jodl@tuwien. ac. at 46
1 Conclusion 2 3 4 5 6
• • Life cycle cost research is a up-to-date task Budgeting for building construction is usual Budgeting for maintenance is not usual Investments in maintenance and repair are not sexy but extremely necessary Huge data bases exist but data allocation is missing Public infrastructure companies seek for anticipatory budget planning Scientific confirmed data and cost are required There is still a lot of research work to be done hans. jodl@tuwien. ac. at
УАСГ- гр. София БЛАГОДАРЯ ЗА ВНИМАНИЕТО! O. Univ. Prof. Dipl. -Ing. Dr. techn. Hans Georg Jodl Institute of Interdisciplinary Construction Process Management Vienna University of Technology


