
9282bf4182f6350612fca0e947542e2f.ppt
- Количество слайдов: 32
Radio observations of dust and cool gas in the first galaxies Chris Carilli (NRAO) RAS March 2012 • Current State-of-Art: host galaxies of z ~ 6 quasars and the early formation of massive galaxies and SMBH • The Future is now! The Atacama Large Millimeter Array and Jansky Very Large Array Thanks: Wang, Riechers, Walter, Fan, Bertoldi, Menten, Cox ESO
cm to submm diagnostics of galaxy formation 100 Mo yr-1 at z=5 • Low J CO emission: total gas mass, dynamics • High density gas tracers (HCN, HCO+) • Synch. + Free-Free = star formation EVLA and GBT Line • High J molecular lines: gas excitation, physical conditions • Dust continuum = star formation • Atomic fine structure lines: ISM gas coolant
Massive galaxy and SMBH formation at z~6: Quasar host galaxies at tuniv<1 Gyr SDSS Apache Point NM Why quasars? § Rapidly increasing samples: z>4: > 1000 known z>5: > 100 z>6: > 20 § Spectroscopic redshifts § Extreme (massive) systems: Lbol ~1014 Lo=> MBH~ 109 Mo => Mbulge ~ 1012 Mo 1148+5251 z=6. 42
0. 9 um Gunn-Peterson effect toward z~6 SDSS QSOs § Pushing into the tail-end of cosmic reionization => sets benchmark for first luminous structure formation § GP effect => study of ‘first light’ is restricted to obs > 1 um Fan 05
Dust in high z quasar host galaxies: 250 GHz surveys Hy. LIRG Wang sample 33 z>5. 7 quasars • 30% of z>2 quasars have S 250 > 2 m. Jy • LFIR ~ 0. 3 to 1. 3 x 1013 Lo • Mdust ~ 1. 5 to 5. 5 x 108 Mo (κ 125 um = 19 cm 2 g-1)
• Dust formation at tuniv<1 Gyr? Ø AGB Winds > 109 yr Ø High mass star formation? (Anderson, Dwek, Cherchneff, Shull, Nozawa) SMC, z<4 quasars Galactic Ø ‘Smoking quasars’: dust formed in BLR winds/shocks (Elvis, Ilitzur) Ø ISM dust formation (Draine) • Extinction toward z=6. 2 QSO + z~6 GRBs => different mean grain properties at z>4 (Perley, Stratta) Ø Larger, silicate + amorphous carbon dust grains formed in core collapse SNe vs. eg. graphite z~6 quasar, GRBs Stratta et al.
Under standard model assumptions (Michalowski ea 2011): • AGB stars: insufficient in most instances • SN: sufficient only if no dust destruction
Dust heating? Radio to near-IR SED Star formation low z QSO SED TD ~ 1000 K Radio-FIR correlation § FIR excess = 47 K dust § SED = star forming galaxy with SFR ~ 400 to 2000 Mo yr-1
Fuel for star formation? Molecular gas: 8 CO detections at z ~ 6 with Pd. BI, VLA 1 m. Jy • M(H 2) ~ 0. 7 to 3 x 1010 (α/0. 8) Mo • Δv = 200 to 800 km/s • Accurate host galaxy redshifts
CO excitation: Dense, warm gas, thermally excited to 6 -5 230 GHz 691 GHz starburst nucleus Milky Way • Radiative transfer model => Tk > 50 K, n. H 2 = 2 x 104 cm-3 • Galactic Molecular Clouds (50 pc): n. H 2~ 102 to 103 cm-3 • GMC star forming cores (~1 pc): n. H 2~ 104 cm-3 => Entire ISM (kpc-scales) ~ GMC SF cloud core!
LFIR vs L’(CO): ‘integrated K-S Star Formation relation’ • Further circumstantial evidence for star formation SFR • Gas consumption time (Mgas/SFR) decreases with SFR FIR ~ 1010 Lo/yr => tc > 108 yr FIR ~ 1013 Lo/yr => tc < 107 yr 1 e 3 Mo/yr Index=1. 5 MW 1 e 11 Mo Mgas
Imaging => dynamics => weighing the first galaxies 0. 15” TB ~ 25 K z=6. 42 Pd. BI CO 7 -6 CO 3 -2 VLA -150 km/s 7 kpc 1” ~ 5. 5 kpc + +150 km/s § Size ~ 6 kpc, with two peaks ~ 2 kpc separation § Dynamical mass (r < 3 kpc) ~ 6 x 1010 Mo § M(H 2)/Mdyn ~ 0. 3
Break-down of MBH – Mbulge relation at high z • <MBH/Mbulge> ~ 15 higher at z>4 => Black holes form first? • Caveats: ØBetter CO imaging (size, i) ØBias for optically selected quasars? • At high z, CO only method to derive Mbulge
[CII] 158 um search in z > 6. 2 quasars § Dominant ISM gas cooling line, tracing CNM and PDRs § [CII] strongest cm to FIR line in SF galaxies ~ 0. 1% to 1% LGal § z>4 => FS lines observed in (sub)mm bands; z>6 => Bure! [CII] 1” [NII] • L[CII] = 4 x 109 L o • S 250 GHz = 5. 5 m. Jy • S[CII] = 12 m. Jy • S[CII] = 3 m. Jy • S 250 GHz < 1 m. Jy
1148+5251 z=6. 42: ‘Maximal star forming disk’ Pd. BI 250 GHz 0. 25”res • [CII] size ~ 1. 5 kpc => SFR/area ~ 1000 Mo yr-1 kpc-2 • Maximal starburst (Thompson, Quataert, Murray 2005) Ø Self-gravitating gas and dust disk Ø Vertical disk support by radiation pressure on dust grains Ø‘Eddington limited’ SFR/area ~ 1000 Mo yr-1 kpc-2 Ø eg. Arp 220 on 100 pc scale, Orion SF cloud cores < 1 pc
[CII] SMC • CII/FIR: Large scatter, with possible cut-off at FIR ~ 1012 Lo Ø lower gas heating efficiency due to charged dust grains in high radiation environments (Malhotra) Ø Opacity in FIR may also play role (Papadopoulos) • Low metalicity => high CII/FIR: increased UVMFP (Israel ea 2011)
[CII] SF gal AGN • High z sources: even larger scatter • SF galaxies: CII/FIR ~ 0. 1% to 1% • AGN: CII/FIR < 0. 1% Stacey ea 2011
Summary: cm/mm observations of 33 quasars at z~6 160 u. Jy JVLA Only direct probe of the host galaxies J 1425+3254 CO at z = 5. 9 § 11 in mm continuum => Mdust ~ 108 Mo: Dust formation? § 10 at 1. 4 GHz continuum: Radio to FIR SED => SFR ~ 1000 Mo/yr § 8 in CO => Mgas ~ 1010 (α/0. 8) Mo = Fuel for star formation Ø High excitation ~ starburst nuclei, but on kpc-scales Ø Follow star formation law: tc ~ 107 yr § Departure from MBH – Mbulge at z~6: BH form first? § 3 in [CII] => maximal star forming disk: 1000 Mo yr-1 kpc-2
Building a giant elliptical galaxy + SMBH at tuniv< 1 Gyr § ‘Massive-Black’ hydro-simulation ~ 1 c. Gpc 3 (di Matteo ea. 2012) § Stellar mass > 1011 Mo forms via efficient cold mode accretion: SFR ~ gas accretion rate > 100 Mo yr-1 § SMBH of ~ 109 Mo forms (first) via steady, Eddington-limited accretion § Evolves into giant elliptical galaxy in massive cluster (1015 Mo) by z=0
Building a giant elliptical galaxy + SMBH at tuniv< 1 Gyr • Good news: Rapid enrichment of metals, dust in early, massive galaxies • Bad news: Rare, extreme mass objects: ~ 100 SDSS z~6 QSOs on entire sky! • Goal: push to first ‘normal’ galaxies
Karl G. Jansky Very Large Array • 80 x Bandwidth (8 GHz, full stokes), with 4000 channels • 5 x frequency coverage (continuous 1 to 50 GHz) • 10 x continuum sensitivity (<1 u. Jy) • Spatial resolution ~ 40 mas at 43 GHz
Atacama Large Milllimeter Array • High sensitivity array = 54 x 12 m • Wide field imaging array = 12 x 7 m • Frequencies = 80 GHz to 900 GHz • Resolution = 20 mas at 800 GHz • Sensitivity = 13 u. Jy in 1 hr at 230 GHz ALMA+EVLA represent an order of magnitude, or more, improvement in observational capabilities from 1 GHz to 1 THz!
ALMA and first galaxies 100 Mo/yr 10 Mo/yr ALMA small Fo. V (1’ at 90 GHz) => still need wide field cameras on large single dishes
8 GHz spectroscopy SMG at z~6 in 24 hrs • ALMA: Detect multiple lines, molecules per 8 GHz band = real spectroscopy/astrochemistry • EVLA: 30% FBW, ie. 19 to 27 GHz (CO 1 -0 at z=3. 2 to 5. 0) => large cosmic volume searches for molecular gas w/o need for optical redshifts
First JVLA results: 46 GHz, BW=256 MHz, Fo. V = 1’ CO 1 -0 • CO 2 -1 from 3 SMGs z~4. 0 • CO 1 -0 from normal SF galaxy z ~ 1. 5 => Every few hour observation with JVLA at > 20 GHz will discover new galaxies in CO! s. Bz. K z=1. 5 z=4. 055 4. 056 CO 2 -1 HST/SUBMM 4. 051
• On time and on budget • Early science Ap. J special issue: September 2011
ALMA status (Jan 2012) • 27 Antennas on high-site • 54 antennas in Chile • 38 front-ends delivered • Early science has begun (8/1 over subscription!) • Full operation by end 2013
The VLA Strikes Back!
≤z Y J H Bouwens ea 2012 z > 7 Ly-break galaxies • SFR ~ 1 to 10 Mo yr-1 • > 1 arcmin-2 • Decreasing dust content w. z X 1600 A
Comparison to low z quasar hosts z=6 FIR lum quasars IRAS selected PG quasars z=6 stacked mm non-detections
EVLA/ALMA Deep fields: 1000 hrs, 50 arcmin 2, 8 GHz BW • Volume (EVLA, z=2 to 2. 8) = 1. 4 e 5 c. Mpc 3 • 1000 galaxies z=0. 2 to 6. 7 in CO with M(H 2) > 1010 (α/3. 8) Mo • 100 in [CII] z ~ 6. 5 • 5000 in dust continuum New horizon for deep fields! Millennium Simulations Obreschkow & Rawlings
9282bf4182f6350612fca0e947542e2f.ppt