Математика и информатика.ppt
- Количество слайдов: 5
Примеры: Пример 1. Сколькими способами можно раскрасить диаграмму из 4 столбцов четырехцветной ручкой так, чтобы каждый столбец был окрашен в определенный цвет. Решение: Порядок расположения элементов имеет значение и в диаграмме 4 столбца, а ручка тоже четырехцветная, т. е. все элементы присутствуют в соединении, следовательно, это соединение – перестановка. А так как окраска столбцов не повторяется (в условии сказано, что столбцы имеют разные цвета), то это перестановка без повторения. Итак, Pn = n! = 4! = 1 2 3 4 = 24 Ответ: столбцы можно закрасить 24 способами.
Пример 2. Имеется 5 кружков: 3 белых и 2 черных. Сколько различных узоров можно получить, располагая кружки в ряд. Решение: Порядок расположения элементов имеет значение и в узоре 5 кружков, т. е. все элементы присутствуют в соединении, следовательно, это соединение – перестановка. А так как окраска кружков повторяется (в условии сказано, что 3 белых и 2 черных), то это перестановка с повторением. Итак, Ответ: узор можно составить 10 способами.
Пример 3. Сколько словарей надо издать, чтобы можно было непосредственно выполнить перевод с любого из 5 языков на любой из 5 языков. Решение: Порядок имеет значение (так как русскоанглийский и англо-русский словари различны) и не все элементы присутствуют в соединении (а только 2 из 5), значит, это размещение. Так как языки различны, то это размещение без повторения. Итак, Ответ: надо составить 20 словарей.
Пример 4. На железнодорожной станции имеется 5 светофоров. Сколько может быть дано различных комбинаций их сигналов, если каждый светофор имеет 3 состояния. Решение: Порядок имеет значение и не все элементы присутствуют в соединении, значит, это размещение. Так как цвета повторяются, то это размещение с повторением. Итак, Ответ: может быть дано 243 различных комбинаций цветов.
Пример 5. 12 человек играли в городки. Сколькими способами они могут разбиться на команды по 4 человека в каждой. Решение: Порядок расположения игроков в команде не имеет значения, следовательно, это сочетание. А так как игроки не повторяются (все члены команды различные люди), то это сочетание без повторения. Итак, Ответ: игроки могут разбиться на команды по 4 человека в каждой 495 способами.
Математика и информатика.ppt