Скачать презентацию Причины разнообразия магматических пород n n n Скачать презентацию Причины разнообразия магматических пород n n n

Причины разнообразия магматических пород.ppt

  • Количество слайдов: 24

Причины разнообразия магматических пород Причины разнообразия магматических пород

n n n n Существует несколько видов эволюционных процессов, которые могут привести к образованию n n n n Существует несколько видов эволюционных процессов, которые могут привести к образованию многих конечных магматических пород за счет небольшого числа родоначальных магм. Эти процессы сводятся к: 1) дифференциации, 2) ассимиляции, 3) гибридизации и 4) смесимости магм. Трудно предположить, что в каждом случае магматической эволюции имело место влияние какого-либо одного процесса. Изменение характера магмы следует рассматривать как серию весьма сложных явлений, в которых участвуют с различной интенсивностью все указанные выше процесса.

Дифференциация магмы n n n Это все процессы, которые могут привести к распаду однородной Дифференциация магмы n n n Это все процессы, которые могут привести к распаду однородной родоначальной магмы на фракции, образующие в конечном итоге горные породы различного состава. Выражение «однородная магма» подразумевает, что крупные образцы, взятые произвольно из начальной магмы, одинаковы как в смысле валового состава, так и физического состояния. Тем не менее, магма может быть неоднородна в малых полях. В частности это вызвано ее частично жидким, а частично твердым состояние до начала дифференциации.

Поведение водных растворов в лабораторных условиях позволяет предположить наличие различных механизмов, способных вызывать дифференциацию Поведение водных растворов в лабораторных условиях позволяет предположить наличие различных механизмов, способных вызывать дифференциацию магмы n n 1. Внутри еще полностью жидкой магмы может возникнуть различие в составе вследствие опускания тяжелых ионов или кластеров под действием силы тяжести или вследствие миграции ионов в тех участках жидкой массы, где возникает температурный градиент. Он не имеет важного значения вследствие чрезвычайно низкой скорости миграции ионов в вязкой магме, а также ввиду малой величины температурных градиентов даже в равновесном состоянии.

n n n 2. Возможно, что однородная жидкая магма при охлаждении распадается на две n n n 2. Возможно, что однородная жидкая магма при охлаждении распадается на две несмешивающиеся жидкие фракции. Однако существует весьма убедительное доказательство, полученное во время лабораторных опытов, а также наблюдений за поведением шлака в металлургических плавках и исследований структуры самих пород, что при температуре магмы силикатные расплавы, приближающиеся по составу к магматическим горным породам большинства (если не всех) известных видов, смешиваются во всех пропорциях. Возможным исключением является образование в основных лавах миндалин, выполненных минералами, богатыми железом и кремнеземом (зеленый халцедон, карбонаты).

n n n 3. Некоторые петрологи для объяснения дифференциации обращались к механизму «переноса в n n n 3. Некоторые петрологи для объяснения дифференциации обращались к механизму «переноса в газовой фазе» . Эта гипотеза предполагает присутствие газовой фазы, состоящей главным образом из летучих веществ (H 2 O, CO 2 и т. д. ), встречающихся в виде бесчисленных пузырьков, плавающих в жидкой магме и действующих как собиратели и переносчики слабо летучих составляющих магмы. Эта подвижная жидкость (газ) должна иметь такой же состав, как и жидкая магма. Трудно предположить, что такое разделение произойдет в глубинных условиях, по крайней мере, до тех пор, пока кристаллизация (а значит и дифференциация) развита незначительно. Однако вблизи поверхности Земли, то есть в типично вулканических условиях, например в магматических резервуарах, подающих материал в вулканический кратер, выделение магматического газа, может, конечно, происходить в большом количестве и способствовать процессу дифференциации.

n n n 4. Вероятно, гораздо большее значение, чем собственно газовый перенос, имеет механизм, n n n 4. Вероятно, гораздо большее значение, чем собственно газовый перенос, имеет механизм, при котором различие состава может возникнуть в жидкой магматической фазе под действием растворенной воды. Вода за счет диффузии будет распределяться в магме таким образом, чтобы ее химический потенциал оставался постоянным во всей магматической камере. С помощью этого механизма вода будет накапливаться в магматической камере в областях с наиболее низким давлением и температурой. Щелочи и некоторые металлы, так же как и вода, будут концентрироваться в областях наиболее низких давлений и температур. Однако таким способом можно только на качественном уровне объяснить, каким образом могут возникать местные концентрации «летучих» и щелочей под влияние градиентов температуры и давления в охлаждающейся магме, без переноса щелочей в дискретной газовой фазе.

n n n 5. При начале кристаллизации магмы в качестве факторов дифференциации действуют различные n n n 5. При начале кристаллизации магмы в качестве факторов дифференциации действуют различные механизмы фракционной кристаллизации (выделение последовательных кристаллических фракций из остаточного магматического расплава). На кристаллизационную дифференциацию почти всегда участвующую в дифференциации, отчетливо указывают минеральные ассоциации, наблюдающиеся в магматических горных породах. Экспериментальные данные по кристаллизации таких соединений, как полевые шпаты, фельдшпатоиды, пироксены, оливин и кварц, из силикатных расплавов в управляемых условиях ясно показывает, что минералы, встречающиеся совместно в магматических горных породах, кристаллизуются при одних и тех же температурах (например, оливин-диопсид, оливин-лабрадор, ортоклазолигоклаз, фаялит-ортоклаз). Минералы с резко различными областями кристаллизации (например, олигоклаз и оливин, ортоклаз и диопсид, мусковит и лабрадор) совместно не встречаются. Учитывая все это, кристаллизационную дифференциацию, следует считать главным фактором дифференциации.

n n n 6. Осаждение кристаллов тяжелых минералов в менее плотной жидкости (гравитационная дифференциация n n n 6. Осаждение кристаллов тяжелых минералов в менее плотной жидкости (гравитационная дифференциация может быть эффективным, особенно на ранних стадиях, когда жидкая магма все еще преобладает и еще не слишком вязкая, чтобы мешать оседанию кристаллов. Существование слоев, богатых оливином и авгитом, в дифференцированных силах основного состава, может рассматриваться как доказательство эффективности осаждения кристаллов. Лабораторными опытами доказана возможность осаждения кристаллов оливина и пироксена в жидкости, имеющей плотность базальтовой магмы. В крупных стратифицированных интрузиях основного состава (интрузивные комплексы Скергаард и Стиллуотер) наблюдается пластовая форма и структурные особенности сортировки, аналогичные структурам, возникающим в результате постепенного осаждения. Это не оставляет сомнения в том, что в формировании этих интрузий основную роль играл процесс накопления кристаллов, опускавшихся в жидкой магме.

n n n 7. Всплывание легких кристаллов (например, полевого шпата, лейцита) в тяжелой жидкости. n n n 7. Всплывание легких кристаллов (например, полевого шпата, лейцита) в тяжелой жидкости. Этот механизм был использован для объяснения присутствия анортозита (лабрадорит, анортозит) на верхних уровнях интрузий габбро. Это, вероятно, менее распространенный процесс, чем процесс осаждения тяжелых минералов, подобных оливину и авгиту.

n n n 8. Если на некоторой стадии эволюции магмы развивается газовая фаза, и n n n 8. Если на некоторой стадии эволюции магмы развивается газовая фаза, и если пузырьки газа всплывают кверху, то на концентрацию легких кристаллов вверху может, повидимому, оказать влияние процесс флотации. Он заключается в том, что поднимающиеся пузырьки садятся на отдельные кристаллы и заставляют их всплывать кверху. Если к моменту кипения кристаллизация зашла достаточно далеко, то поднимающийся газ может выдуть остаточную жидкость кверху через промежутки между кристаллами. Этот механизм получил название «газовая промывка» . Он объясняет взрывной выброс трахитов, отделившихся из оливиново-базальтовой магмы.

n n n 9. Когда кристаллизация магмы в глубинных условиях продвинулась достаточно далеко, кристаллы n n n 9. Когда кристаллизация магмы в глубинных условиях продвинулась достаточно далеко, кристаллы образуют непрерывную сетку, в порах которой сохраняется остаточная жидкость. Если вся масса сжимается при подвижках вмещающих пород, то остаточная жидкость выжимается с образованием отдельного от дифференцированной магмы тела. Если сетка кристаллов разрывается под действием растягивающих сил, то остаточная жидкость стремится заполнить образовавшиеся таким образом пустоты. Этот процесс называется «автоинтрузией» или минглинг. Одним из многочисленных примеров подобного процесса считается образование неправильного тела сиенита мощностью 18 м в дифференцированном силе основного состава на острове Шайант в Шотландии. Существуют примеры разламывания кварцитов и подобных им хрупких пород, что вызывает миграцию остаточной магмы в образованные таким образом полости.

n n 10. Ранее образованные кристаллы тяжелых минералов (оливин, пироксены) могут концентрироваться в движущейся n n 10. Ранее образованные кристаллы тяжелых минералов (оливин, пироксены) могут концентрироваться в движущейся магме с помощью механизма, аналогичного отмучиванию. Этому должна благоприятствовать низкая вязкость жидкой фазы, и его эффекты следует искать в массе основных изверженных пород, содержащих большое количество воды (например потухший третичный вулкан в штате Орегон).

n n n n 11. Природа жидкой фракции кристаллизующейся магмы в определенный момент зависит n n n n 11. Природа жидкой фракции кристаллизующейся магмы в определенный момент зависит от природы материнской магмы, преобладающих температуры и давления, степени, до которой уже развилась фракционная кристаллизация, и характера равновесия между кристаллами и жидкостью. Многие минералы магматического происхождения, устойчивые при высоких температурах, становятся неустойчивыми на контакте с магматической жидкостью при более низких температурах. Равновесие обычно восстанавливается при реакции между жидкостью и кристаллами, причем образуется некоторая новая кристаллическая фаза. Это процесс обратный инконгруэнтному плавлению. В некоторых условиях охлаждения новая устойчивая фаза может образовывать каемку вокруг кристалла неустойчивой фазы, которая, таким образом, будет изолирована от жидкости. Вследствие того, что диффузия в ионном кристалле идет намного медленнее, чем в жидкости, скорость реакции сразу резко падает и становится бесконечно малой, по мере того как растет толщина защитной оболочки из устойчивой кристаллической фазы. Хорошо известные зональные кристаллы (например, плагиоклазы) и реакционные каемки минералов магматических пород показывают, что это обычное явление. Возникающая в этом случае неравновесность не может явиться причиной дифференциации, за исключением весьма малых областей вокруг отдельных зональных кристаллов, но она может сильно повлиять на состав остаточных жидкостей и горных пород, дифференциация которых происходила иначе, например при помощи «промывания газом» . Таким образом, это явление можно считать одним из возможных способов дифференциации.

Ассимиляция магмы n n n Магма, внедряющаяся в какие-либо вмещающие породы, редко находится в Ассимиляция магмы n n n Магма, внедряющаяся в какие-либо вмещающие породы, редко находится в химическом равновесии с ними, хотя она может быть в равновесии с одним или несколькими минералами, слагающими эти породы. Таким образом, во время внедрения должны происходить реакции между магмой и вмещающей породой. В ходе такой реакции состав магмы (в большинстве случаев силикатного расплава с взвешенными в нем кристаллами одной или нескольких твердых фаз) изменяется в результате поглощения вещества вмещающей породы. Этот процесс изменения состава магмы называют ассимиляцией. По мере приближения к контакту с интрузией вмещающие породы становятся все более измененными в результате их химического обмена со смежными частями магмы. В конце концов, они приобретают состав, близкий или тождественный составу контаминированной изверженной породы, с которой они в конечном итоге сливаются.

Гибридизация магмы n n n n Если переработка ксенолитов вмещающих пород магмой происходила не Гибридизация магмы n n n n Если переработка ксенолитов вмещающих пород магмой происходила не до конца, то такой процесс называется гибридизацией, а возникающие породы – гибридными. Процесс гибридизации приводит к образованию в участках, примыкающих к ксенолитам, «загрязненных» магматических пород, по составу существенно отличающихся от пород массива. Минералы вмещающих пород, температура кристаллизации которых ниже температуры магмы, могут полностью или частично расплавиться и раствориться в магме. Другие минералы, имеющие более высокие температуры кристаллизации, оставаясь все время твердыми, будут в результате реакций ионного обмена метасоматически преобразовываться в минералы, равновесные с магмой. Если во вмещающих породах находятся такие же минералы, какие кристаллизуются из магмы, они сохранятся неизменными. В результате взаимодействия магмы с вмещающими породами происходит уравнивание состава между ними. Магма обогатится теми компонентами, которые входят в состав вмещающих пород, а последние – компонентами магмы. Когда при непрерывном охлаждении такая магма полностью раскристаллизуется, образуются гибридные породы, состоящие частью из исходной магмы и частью из материала вмещающих пород.

Характерные особенности гибридных пород n n n 1. Крайне неоднородная текстура пород. Вблизи краевых Характерные особенности гибридных пород n n n 1. Крайне неоднородная текстура пород. Вблизи краевых частей интрузивного массива присутствуют ксенолиты, а в направлении к центру массива, где ксенолиты более переработаны магмой, на их месте находятся неправильные участки пород, отличающиеся от окружающих по составу и структуре, что создает общую атакситовую текстуру. 2. Разнообразие и невыдержанность структур, как по размеру зерен, так и по просхождению. В гибридных породах наблюдается сочетание типичных магматических гипидиоморфнозернистых, а также кристаллобластовых и бластокластических структур, образующихся при раздроблении пород и цементации их мелкозернистым агрегатом новообразованных минералов. 3. Наблюдаются необычные реакционные взаимоотношения минералов (глазки кварца, окруженные зернами пироксена; нарастание каемок пироксена на кристаллах амфибола). 4. Необычные для магматических пород соотношения между фемическими и салическими минералами, которые быстро меняются на малых расстояниях (например, наличие в краевых частях массива шлиров гранитов, содержащих 20 и более процентов цветных минералов). 5. Наличие ксеногенных, чуждых данной породе минералов. 6. Повышенное содержание акцессорных минералов, богатых летучими компонентами (апатит, флюорит, ортит), которые способствуют поглощению компонентов вмещающих пород.

Смешение родоначальных магм n n Уже в 1951 г. Боуэн высказал предположение, что смешение Смешение родоначальных магм n n Уже в 1951 г. Боуэн высказал предположение, что смешение двух различных материнских магм (базальтовой и риолитовой) может объяснить все возможные составы, наблюдающиеся в базальтовых лавах андезито-риолитового ряда в Исландии и в других местах. С развитием петрографии была доказана полная непригодность этой гипотезы для объяснения петрографических различий горных пород. Химические и минералогические составы горных пород, известные даже в какой-либо одной области оказываются при детальном исследовании слишком сложными, и их нельзя рассматривать как простые линейные соотношения, которые должны возникать в результате смешения каких-то двух конечных членов. Смешение магм теперь уже не рассматривается как основной фактор магматической эволюции.

n n n Это не значит, однако, что смешение магм вообще не может иметь n n n Это не значит, однако, что смешение магм вообще не может иметь места. Некоторые необычные горные породы, в которых большое число кристаллических фаз находится в неравновесных парагенезисах, могут представлять собой в ряде случаев продукты смешения двух частично закристаллизованных магм. Одним из возможных примеров являются кейвекиты (Новая Зеландия). Они представляют собой лавы, в которых вкрапленники плагиоклаза, анортоклаза, авгита (с эгириновыми каемками), оливина и бурой роговой обманки погружены в основную массу из олигоклаза, анортоклаза и авгита. Они рассматриваются как базальто-трахитовые гибридные породы. Гораздо большее значение, чем такие редкие породы, как кейвекиты, имеют примеры смешения магм для более распространенных типов лав, особенно для андезитов и базальтов. В лавах из вулканической провинции Сан-Хуан в Колорадо различия состава вкрапленников плагиоклаза слишком сложны, чтобы их можно было объяснить простой дифференциацией. Эти изменения совместимы с механизмом смешения двух магм, содержащих взвешенные кристаллы. Кроме того, авторы работ по провинции Сан-Хуан пришли к выводу, что здесь должно было иметь место весьма тщательное перемешивание больших масс магмы для того, чтобы можно было объяснить однородное распределение вкрапленников полевого шпата в лавах очень протяженных потоков. На основании вышеприведенного примера и на основании весьма широкого распространения вкрапленников плагиоклазов с сильно изменяющимся составом в андезитах и дацитах представляется возможным предположить, что основная функция магматического смешения в эволюции магматического ряда заключается в соединении магм одинакового происхождения, которые ранее обособились в результате дифференциации или ассимиляции.

Условия кристаллизации магмы n n n n n Степень кристалличности и зернистости пород зависит Условия кристаллизации магмы n n n n n Степень кристалличности и зернистости пород зависит в основном от условий кристаллизации магмы. Полнокристаллические крупно- и среднезернистые породы являются преимущественно интрузивными абиссальными, то есть застывшими на глубине более 1 км. Они образовались в условиях медленного понижения температуры, под большим давлением вмещающих пород, что препятствовало отделению минерализаторов, снижающих вязкость магматического расплава. Если внешнее давление сохраняется в ходе кристаллизации, остаточный расплав магмы значительно обогащается минерализаторами, что создает условия для образования гигантозернистых структур, характерных для пегматитов. Эффузивные породы, имеющие скрытокристаллическую структуру и часто содержащие вулканическое стекло, образовались на поверхности Земли в условиях резкого падения температуры при незначительном давлении. Вследствие этого расплав быстро терял летучие компоненты. Гипабиссальные породы, сформировавшиеся на небольших глубинах в промежуточных условиях, имеют мелкозернистые и афанитовые структуры. В природе существуют исключения из выше приведенных условий. Если в интрузивных телах образуется трещиноватость, то минерализаторы (летучие компоненты) легко выделяются из магмы, потеря которых приводит к резкому повышению вязкости магмы и быстрой ее кристаллизации с образованием мелкозернистой структуры (например, при образовании аплитов). Структуры пород, слагающих разные участки одного и того же массива, обычно различны. В краевых частях любых интрузивных и эффузивных тел породы менее раскристаллизованны, чем в центральных участках.

n n Процесс кристаллизации магмы определяется в основном двумя факторами, из которых складывается кристаллизационная n n Процесс кристаллизации магмы определяется в основном двумя факторами, из которых складывается кристаллизационная способность вещества: 1) количеством образующихся центров кристаллизации и 2) скоростью роста кристаллов. Кристаллизация расплава возможна лишь при некотором его переохлаждении, потому что в истинно равновесных условиях выделение теплоты при переходе вещества из жидкого в твердое состояние обусловливает расплавление образовавшихся кристаллов, в то время как при переохлаждении этой теплоты оказывается недостаточно.

n n n n n Число центров кристаллизации в районе точки плавления очень незначительно, n n n n n Число центров кристаллизации в районе точки плавления очень незначительно, но оно возрастает с увеличением степени переохлаждения, а затем, пройдя максимум, уменьшается и становится равным нулю. Скорость роста кристаллов также мала вблизи точки плавления, увеличивается по мере удаления от нее, переходит через максимум и уменьшается до нуля. При этом максимумы кривых скорости роста кристаллов и скорости образования центров кристаллизации не совпадают, что обусловливает наличие нескольких областей переохлаждения с различной кристаллизационной способностью и соответственно с разными типами структур. При быстром охлаждении магмы поле с малым числом центров кристаллизации может быть пройдено также быстро, и затвердевание происходит в поле с большим количеством центров кристаллизации. Если при этом скорость роста кристаллов небольшая (поле ab), то образуются микролитовые структуры. В поле bc (скорость роста минимальная) образуются крупнозернистые структуры. При уменьшении скорости и дальнейшем переохлаждении – мелкозернистые структуры (поле cd). Если кристаллизация происходит в поле de, где скорость роста мала, возникает сферолитовое строение. В поле ef скорость роста еще меньше, что ведет к образованию скрытокристаллических структур. За пределами поля ef при очень сильном переохлаждении магма не кристаллизуется и затвердевает в виде вулканического стекла.

n n n 1. Таким образом, следствием быстрого охлаждения является мелкозернистость и присутствие вулканического n n n 1. Таким образом, следствием быстрого охлаждения является мелкозернистость и присутствие вулканического стекла. 2. Афанитовые структуры характерны для эффузивных пород и встречаются в краевых частях интрузивных тел, так как в этих условиях при соприкосновении с атмосферным воздухом и холодными вмещающими породами происходит быстрое охлаждение магмы. 3. Если охлаждение происходит неравномерно (сначала медленно, потом быстро), то возникают порфировые структуры, в которых фенокристаллы образуются первыми в условиях медленного охлаждения, а основная масса – это быстро застывший расплав. 4. Высокое давление препятствует росту кристаллов, так повышает вязкость расплава, но в природных условиях давление благоприятствует кристаллизации, так как удерживает в магме минерализаторы, которые снижают вязкость магмы.