презентация 2 Бажибаева А. РЭТ-10-4.pptx
- Количество слайдов: 21
ПРЕОБРАЗОВАТЕЛИ ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА
Преобразователь переменного тока в постоянный, иначе, выпрямитель электрического тока — механическое, электровакуумное, полупроводниковое или другое устройство, предназначенное для преобразования переменного входного электрического тока в постоянный выходной электрический ток. Большинство выпрямителей создаёт не постоянные, а пульсирующие однонаправленные напряжение и ток, для сглаживания пульсаций которых применяют фильтры. Устройство, выполняющее обратную функцию — преобразование постоянных напряжения и тока в переменные напряжение и ток — называется инвертором. Из-за принципа обратимости электрических машин выпрямитель и инвертор являются двумя разновидностями одной и той же электрической машины (справедливо только для инвертора на базе электрической машины). Основной деталью такого преобразователя является элемент, хорошо проводящий ток одного направления, и плохо или совсем не проводящий ток противоположного направления. Таким прибором могут быть диод или газоразрядная лампа. Для реализации преобразователей широко используются полупроводниковые приборы, так как они обеспечивают высокий КПД. Преобразователь используется для преобразования постоянного тока в переменный, в том числе при утяжеленных условиях эксплуатации в вакуумной среде, повышенной температуре, радиации и т. п. и повышенных требованиях к надежности эксплуатации, например, в высокотемпературных космических ядерно-энергетических установках.
Электроэнергия вырабатывается на электростанциях синхронными генераторами, т. е. генераторами переменного тока, который удобно преобразовывать трансформаторами и передавать на большие расстояния. Между тем имеется ряд технологических процессов, требующих постоянного тока: электролиз, зарядка аккумуляторов и т. д. Поэтому часто возникает необходимость преобразования переменного тока в постоянный и обратно. Широко распространенные в начале XX в. электромашинные преобразователи (одноякорные преобразователи и мотор-генераторные установки) уступили свое место более компактным и бесшумным полупроводниковым выпрямителям. Благодаря высоким Рис. 1. 12. Двухтактный однофазный выпрямитель эксплуатационным показателям и малым габаритам полупроводниковых выпрямителей появилась тенденция к замене генераторов постоянного тока синхронными генераторами, имеющими на выходе полупроводниковый выпрямитель. Таким образом, появились новые классы машин — трансформаторов и синхронных, — постоянно работающих с выпрямителями. Однако работа электрической машины на выпрямитель имеет особенности, которые надо учитывать при проектировании этих машин и анализе процессов, происходящих в них.
Преобразование переменного тока в постоянный производится с помощью полупроводниковых вентилей, имеющих одностороннюю проводимость. На рис. 1. 12 и 1. 13 показаны наиболее распространенные схемы выпрямителей: однофазного (рис. 1. 12, а) и трехфазного (рис. 1. 13, а) и кривые напряжений и токов (рис. 1. 12, 5. в, рис. 1. 13, 6, в соответственно). Через полупроводниковые вентили (диоды) ток может проходить только тогда, когда положительный потенциал приложен к аноду (в направлении вершины треугольника на рис. 1. 12, а), в связи с чем напряжение на нагрузке — пульсирующее. Рис. 1. 13. Трехфазный мостовой выпрямитель
При однофазном выпрямлении пульсации напряжения на на^-грузке весьма значительны, а частота переменной составляющей в 2 раза выше частоты переменного тока (рис. 1. 12, б). При трехфазном мостовом выпрямлении схема получается шеститактной и пульсации напряжения невелики — менее 6% от постоянной составляющей (рис. 1. 13, б). Ток в цепи нагрузки обычно сглажен сильнее, чем напряжение, так как цепь нагрузки часто содержит индуктивность, представляющую большое сопротивление для переменной составляющей тока и малое — для постоянной. Если считать ток в нагрузке /<* полностью сглаженным, то по обмоткам трансформатора проходит ток, имеющий вид прямоугольников (рис. 1. 12, 6 и 1. 13, в), содержащий высшие гармоники, повышающие нагрев обмоток. Кроме того, при использовании схем выпрямления с нулевой точкой имеется постоянная составляющая тока в обмотках (рис. 1. 12, 6). Из-за этого резко возрастает действующее значение тока и нужно принимать меры против создания постоянного подмагничивания стержня. Для предотвращения этого явления, например, в однофазных трансформаторах применяют либо броневую конструкцию (рис. 1. 14), либо на каждом стержне располагают все обмотки трансформатора, деля их пополам. Большое влияние на работу выпрямителя (рис. 1. 15, о) оказывает коммутация тока — процесс перехода с одного вентиля на другой. Из-за наличия индуктивностей в токопроводящей цепи и индуктивности, обусловленной потоками рассеяния трансформатора, ток с одного вентиля переходит на другой не мгновенно, а за период коммутации Гк, которому соответствует угол коммутации у (рис. 1. 15, б).
Для простоты предположим, что ток в нагрузке Id идеально сглажен. Тогда сумма токов через первый и второй вентили ia и iai в процессе коммутации неизменна: Рис. 1. 14. Схематический чертеж броневого трансформатора В момент начала коммутации, когда значение ЭДС проходит через нуль и меняет знак, обмотка трансформатора становится замкнутой накоротко и для ее контура можно написать уравнение
Во время коммутации напряжение на нагрузке СЛг=0, 5(е 2 а+ +е 2 ь) и в однофазном выпрямителе равно нулю (рис. 1. 15, б). Следовательно, из-за коммутации уменьшается выпрямленное напряжение и увеличивается его пульсация. Поскольку угол коммутации у тем больше, чем больше ток нагрузки Idи индуктивное сопротивление ха, для повышения качества выпрямителя желательно, чтобы питающая его машина имела небольшое индуктивное сопротивление. В трансформаторе ха равно индуктивному сопротивлению, обусловленному потоками рассеяния, и определяется из опыта короткого замыкания В синхронном генераторе где Ха" и xq" — сверхпереходные индуктивности по продольной и поперечной осям соответственно, учитывающие наличие тока в демпферной обмотке. Таким образом, синхронные генераторы, предназначенные для работы на выпрямитель, должны быть рассчитаны на работу с несинусоидальным током и иметь демпферную обмотку. Коэффициент мощности генератора, работающего на нерегулируемый выпрямитель, где v « 0, 9 — коэффициент искажения; >ф « 0, 5 у— угол сдвига тока относительно первой гармоники напряжения.
Преобразование постоянного тока в переменный производится с помощью инверторов, в которых используются управляемые вентили: транзисторы, тиристоры и др. Схема однофазного инвертора представлена на рис. 1. 16. Включение вентилей инвертора производится поочередно каждый полупериод таким образом, чтобы направление тока во вторичной обмотке трансформатора было противоположно направлению ЭДС в этой обмотке, т. е. чтобы энергия передавалась от источника постоянного тока в сеть переменного тока. Инверторы имеют сравнительно сложную систему автоматического управления, что ведет к повышению их стоимости и уменьшению надежности по сравнению с неуправляемыми выпрямителями. Кроме того, в инверторе возможно появление режима сквозного горения, когда ток в обмотке совпадает по фазе с ее ЭДС. Такой режим возможен либо при неисправности в системе управления, либо при слишком большом угле коммутации. При сквозном горении обычно ток возрастает до недопустимого значения и обычно полупроводниковые вентили выходят из строя. Большое число элементов в системе управления и возможность аварийного режима сквозного горения делают надежность инверторов значительно ниже, чем у неуправляемых выпрямителей: наработка на отказ уменьшается в 50. . . 100 раз. Перспективна идея питания от инверторов асинхронных и синхронных двигателей. Изменяя частоту включения вентилей, можно менять частоту напряжения на выводах статора двигателя и тем самым экономично (без сопротивлений) регулировать угловую скорость. Такой способ регулирования скорости называется частотным. Однако низкая надежность систем с инверторами — преобразователями частоты препятствует их широкому применению. Рис. 1. 16. Схема однофазного инвертора
В настоящее время частотное регулирование скорости применяется только в особых условиях, где не могут работать двигатели постоянного тока, погруженные в жидкость: двигатели судов, нефтепроводов, двигатели шаровых мельниц и т. д. Рис. 1. 17. Устройство машины постоянного тока Имеются экспериментальные образцы с частотным регулированием в крановом и тяговом электрооборудовании. В машине постоянного тока имеется своеобразный преобразователь— коллектор, который в генераторном режиме является выпрямителем, а в двигательном — преобразователем частоты.
Конструкция машины постоянного тока сходна с конструкцией обращенной синхронной машины, у которой обмотка якоря находится на роторе, а магнитные полюсы неподвижны. При вращении якоря (ротора) в проводниках обмотки индуцируется ЭДС, направленная так, как это показано на поперечном разрезе рис. 1. 17, а. В проводниках, расположенных по одну сторону линии симметрии, разделяющей полюсы, ЭДС направлена всегда в одну сторону, независимо от угловой скорости. При вращении одни проводники уходят под другой полюс, на их место приходят другие проводники, а в пространстве, под полюсом одной полярности, картина почти неподвижна, только одни проводники сменяются другими. Следовательно, возможно получить практически неизменную ЭДС от этой части обмотки. Постоянная ЭДС получается с помощью скользящего контакта между обмоткой и внешней электрической цепью. Проводники соединяются в витки с шагом ушт, как в машинах переменного тока, а затем витки соединяются последовательно один за другим, образуется замкнутая обмотка. В половине обмотки (в двухполюсной машине) наводится ЭДС одного знака, а в другой — противоположного, как показано на эквивалентной схеме обмотки (рис. 1. 17, б). По контуру обмотки ЭДС в ее частях направлены встречно и взаимно уравновешиваются. Вследствие этого при холостом ходе генератора, т. е. при отсутствии внешней нагрузки, по обмотке якоря ток не проходит. Внешняя цепь соединяется с якорем через щетки, устанавливаемые на геометрической нейтрали. Для улучшения контакта щетки выполняются в виде прямоугольных графитовых брусков, а скользят они по поверхности коллектора, который собирается из медных пластин, изолированных друг от друга.
В крупных машинах начало и конец каждого витка присоединяются к коллекторным пластинам; в малых машинах пластин меньше, чем витков, и поэтому между двумя пластинами припаивается часть обмотки из нескольких витков — секция. Под нагрузкой через проводники якоря проходит ток, направление которого определяется направлением ЭДС. В связи с тем что ток нагрузки постоянен, в витках обмотки якоря ток имеет форму, близкую к прямоугольной (рис. 1. 18, а). При переходе витка из одной параллельной ветви в другую он замыкается накоротко щеткой на время, называемое периодом коммутации (рис. 1. 18, б) TK=b. Jv. KOn, (1. 66) где Ьщ — ширина щетки; и. Кол — линейная скорость точки, находящейся на поверхности коллектора. В простейшем случае, когда щетка уже коллекторной пластины, для секции, замкнутой щеткой (рис. 1. 18, 0), Рис. 1. 18. Диаграммы токов при коммутации
где ii. Ri=AUi и i 2 R 2=AU 2 — падение напряжения в щеточном контакте соответственно с первой и второй коллекторной пластинами; Rc — активное сопротивление секции; Lpe 3 — результирующая индуктивность секции; ек — ЭДС от внешнего поля. Пренебрегая i. Rc ввиду малости Rc, получим Полученное основное уравнение коммутации (1. 68) совпадает с уравнением коммутации в выпрямителе (1. 61). Решение этого уравнения легко получить, предположив, что Д£Л— Д£/2 « 0, Чтобы при выходе из-под щетки первой пластины не происходил разрыв тока, в момент времени t = TK ток через первую пластину должен быть равен нулю: 11(Гк)=0=21 а-|ек. ср71 к/^рез, откуда Это условие безыскровой коммутации сводится к тому, чтобы во всех режимах угол коммутации убыл неизменен: y=*TK=2 v. J>JDav. Koll=2 b'j. Da, (1. 71) где Da — диаметр якоря; va — линейная скорость точки, находящейся на поверхности якоря; Ь'щ=Ьщ. Оа/ОКОл — ширина щетки, приведенная к диаметру якоря.
Для выполнения этого условия ЭДС в зоне коммутации ЭДС ек создается специальными добавочными полюсами, обмотка которых включена последовательно в цепь якоря, а их магнитная цепь делается ненасыщенной. Процесс коммутации в выпрямителях, инверторах и в машинах постоянного тока сходен. И в том и в другом случаях процесс изменения тока в период коммутации определяется значением и формой ЭДС в короткозамкнутом контуре. Поэтому нельзя уподоблять коллектор механическому выпрямителю, как это иногда делается [3]. Наличие коллектора вносит и свои особенности: усложняется конструкция машины и более дорогой становится эксплуатация. Однако эти недостатки электрических машин искупаются их основным преимуществом: в двигательном режиме случайные нарушения коммутации обычно приводят к небольшому подгару коллектора и щеток, а не к аварийному режиму опрокидывания, как в инверторах. Вследствие этого надежность коллекторной машины постоянного тока значительно выше надежности системы «асинхронный двигатель— преобразователь частоты» , ее КПД на 3. . . 5% выше, машина значительно дешевле, имеет меньшие габариты и массу. Эти преимущества и заставляют отдавать предпочтение машине постоянного тока, ограничивая применение асинхронного двигателя с частотным регулированием узкими рамками специфических устройств (двигатели, работающие в жидкости, и т. д. ).
ПРИНЦИП ПРЕОБРАЗОВАНИЯ Преобразователь постоянного тока в переменный содержит магнитопроводы и ротор с неоднородными по магнитной проводимости участками, приводимый во вращение приводом. Каждый из магнитопроводов снабжен первичной обмоткой постоянного тока и общей для них обмоткой переменного тока. Участки с неоднородными проводимостями ротора расположены между полюсами каждой пары полюсов каждого магнитопровода. Число участков с неоднородными проводимостями при симметричном расположении магнитопроводов по окружности ротора пропорционально величине 2(р+1), где р - число пар полюсов всех магнитопроводов. Первичные обмотки возбуждают в зазорах магнитопроводов разнонаправленный магнитный поток возбуждения. В магнитопроводах возникнут чередующиеся пульсации магнитного потока. В общей вторичной обмотке будет наводиться смещенная по фазе переменная ЭДС. Технический результат - повышение надежности. 2 ил. Изобретение относится к энергетике, в частности к преобразовательной технике, предназначенной для преобразования постоянного тока в переменный (инвертирования), в том числе при утяжеленных условиях эксплуатации (вакуумная среда, повышенная температура, радиация и т. п. ) и повышенных требованиях к надежности эксплуатации, например, в высокотемпературных космических ядерноэнергетических установках (ЯЭУ). Известно множество инверторов общепромышленного и специального исполнения. Задача инвертирования электроэнергии в настоящее время решается преимущественно так называемыми статическими преобразователями, наиболее эффективными среди которых по КПД и массогабаритным показателям являются полупроводниковые преобразователи , а. с. N 584418 (МПК 6 H 02 М, 7/537), заявка Великобритании N 1569836 (МПК 6 H 02 М, 1/06).
Аналогом изобретения может быть любой из известных инверторов, например любой из статических полупроводниковых преобразователей, выполняемый по мостовой или дифференциальной схеме однофазного двухполупериодного преобразования. Все известные инверторы (как статические, так и механические) имеют общий физический недостаток: физика инвертирования в них основана на коммутации (размыкании и замыкании) электрических цепей постоянного тока с заданной частотой теми или иными коммутируемыми или ключевыми элементами (транзисторами, тиристорами, для электрических машин - коллекторами). Причем высокочастотный процесс замыкания и размыкания цепи постоянного тока сопровождается комплексом принципиальных проблем коммутации (искрение, пробой и т. д. ), ограничивающих условия и ресурс эксплуатации устройств. Особенно остро этот недостаток проявляется в утяжеленных условиях эксплуатации. Например, в космическом вакууме с ухудшенными условиями теплосброса, при радиоактивном облучении в ЯЭУ, при которых происходит повышение рабочей температуры и возможны пробои ключевых элементов. Тем самым выявляется второй взаимосвязанный недостаток практически всех известных инверторных установок: они удовлетворительно работают преимущественно при нормальных температурах, а в случае повышения температур имеют ограниченный ресурс эксплуатации. Так, промышленные полупроводники работают до 70 -100 o. C, промышленные электрические машины - до 200 o. C (от класса электроизоляции). Анализ принципов построения всех электротехнических устройств приводит к следующему выводу. Для того, чтобы избавиться от природного недостатка инверторов, заложенного в их принципе действия, необходимо взамен электрической коммутации цепей искать решение в использовании иного принципа. Например, в коммутации магнитных цепей или просто в магнитной коммутации. В этом случае электрическая цепь, охватывающая магнитную цепь, оказывается неразрывной, постоянно замкнутой на нагрузку, но в этой цепи индуцируется ЭДС или противо. ЭДС с помощью изменяющегося магнитного потока.
Наиболее близкой к изобретению является конструкция преобразователя постоянного тока в переменный с двигателем постоянного тока и индукторным генератором. Заложенная в принципе действия индукторного генератора магнитная коммутация осуществляет индуктирование (наведение) в статоре переменного тока путем использования неоднородности магнитной проницаемости зубцовой зоны ротора (зубец - паз) при возбуждении от катушки постоянного тока или от постоянных магнитов. Индукторные генераторы устроены так, что непосредственно в них никакого преобразования постоянного тока в переменный не происходит. В них осуществляется преобразование механической энергии, подведенной электродвигателями постоянного тока, в электрическую переменного тока, а постоянный ток используется для поддержания магнитного потока возбуждения. В ряде случаев катушки возбуждения заменяются постоянными магнитами. Величина генерируемой электроэнергии в индукторных генераторах (с учетом КПД) близка той механической энергии, которая подведена к валу от электродвигателя (паровой или гидравлической турбины), а не к обмотке возбуждения. В системе Д-Г индукторный генератор не является инвертором также и по той причине, что замеченная в нем коммутация магнитного потока происходит только в рабочем зазоре машины, а исходное (суммарное) магнитное поле и намагничивающая сила обмотки возбуждения остаются постоянными. При этом в соответствии с законом электромагнитной индукции принципиально невозможно преобразовать в переменный ток незначительную часть энергии, которая привнесена постоянным током возбуждения. Более того, от переменной составляющей в цепи возбуждения, если таковая возникает, стремятся избавляться и рассматривают ее источником дополнительных потерь мощности. Таким образом, прототип обладает двумя недостатками: неспособностью генерировать электроэнергию без подведенной механической энергии, и неспособностью инвертировать при этом энергию постоянного тока в силу постоянства (суммарного) магнитного потока.
Конструктивно прототип состоит из цилиндрической замкнутой магнитной системы, расположенных на ней обмоток возбуждения постоянного тока и однофазной или многофазной обмотки для индуцирования переменного тока, а также вращающего ротора с приводом в виде коллекторного электродвигателя постоянного тока, снабженного средством коммутации магнитного потока (зубцовой зоной) - неоднородной по магнитной проницаемости поверхностью. Задачей предлагаемого изобретения является увеличение надежности преобразователя постоянного тока в переменный и увеличение его ресурса за счет исключения электрической коммутации цепей. Эта задача достигается тем, что преобразователь постоянного тока в переменный, содержащий магнитопровод с обмоткой постоянного тока и обмоткой переменного тока, а также ротор с неоднородными по магнитной проводимости участками и приводом, реализуется в виде по крайней мере двух магнитопроводов, каждый из которых снабжен обмоткой постоянного тока с общей для них обмоткой переменного тока, при этом первичная обмотка постоянного тока возбуждает в магнитопроводах разнонаправленные магнитные потоки, участки с неоднородными проводимостями ротора расположены между полюсами каждой пары полюсов каждого магнитопровода, а число участков с неоднородными проводимостями при симметричном расположении магнитопроводов по окружности ротора пропорционально величине 2(p+1), где p - число пар полюсов всех магнитопроводов. Предлагаемая конструкция не требует специально разработанного оборудования и может быть широко использована в установках с повышенными требованиями эксплуатации.
КЛАССИФИКАЦИЯ ПРЕОБРАЗОВАТЕЛЕЙ Выпрямители Выпрямитель — устройство, предназначенное для преобразования энергии источника переменного тока в постоянный ток. Инверторы Инвертор — устройство, задача которого обратна выпрямителю, то есть преобразование энергии источника постоянного тока в энергию переменного тока. Инверторы подразделяются на два класса: ведомые сетью (зависимые) и автономные. Зависимые инверторы Ведомые инверторы преобразуют энергию источника постоянного тока в переменный с отдачей её в сеть переменного тока, то есть осуществляют преобразование, обратное выпрямителю. Автономные инверторы — устройства, преобразующие постоянный ток в переменный с неизменной или регулируемой частотой и работающие на автономную (не связанную с сетью переменного тока) нагрузку.
ИНВЕРТОРЫ Инве ртор — устройство для преобразования постоянного в переменный ток с изменением величины частоты и/или напряжения. Обычно представляет собой генератор периодического напряжения, по форме приближённого к синусоиде, или дискретного сигнала. Существуют несколько групп инверторов, которые различаются по стоимости примерно в 15 раз: Первая группа более дорогих инверторов обеспечивает синусоидальное выходное напряжение. Вторая группа обеспечивает выходное напряжение упрощённой формы, заменяющей синусоиду. Чаще всего используется сигнал в видетрапецеидального синуса Для подавляющего большинства бытовых приборов допустимо использовать переменное напряжение с упрощённой формой сигнала. Синусоида важна только для некоторых телекоммуникационных, измерительных, лабораторных приборов, медицинской аппаратуры, а также профессиональной аудио аппаратуры. Выбор инвертора производится исходя из пиковой мощности энергопотребления стандартного напряжения 220 В/50 Гц Существуют три режима работы инвертора: Режим длительной работы. Данный режим соответствует номинальной мощности инвертора. Режим перегрузки. В данном режиме большинство моделей инверторов в течение нескольких десятков минут (до 30) могут отдавать мощность в 1, 2 -1, 5 раза больше номинальной. Режим пусковой. В данном режиме инвертор способен отдавать повышенную моментальную мощность в течение нескольких миллисекунд для обеспечения запуска электродвигателей и емкостных нагрузок. В течение нескольких секунд большинство моделей инверторов могут отдавать мощность в 1, 5 -2 раза превышающую номинальную. Сильная кратковременная перегрузка возникает, например, при включении холодильника.
Трёхфазные инверторы Тиристорный (GTO) тяговый преобразователь по схеме «Ларионов-звезда» Трёхфазные инверторы обычно используются для создания трёхфазного тока для электродвигателей, например для питания трёхфазного асинхронного двигателя. При этом обмотки двигателя непосредственно подключаются к выходу инвертора. Высокомощные трёхфазные инверторы применяются в тяговых преобразователях в электроприводе локомотивов, теплоходов, троллейбусов(например, А КСМ-321), трамваев, прокатных станов, буровых вышек, в индукторах (установки индукционного нагрева). На рисунке приведена схема тиристорного тягового преобразователя по схеме «Ларионовзвезда» . Теоретически возможна и другая разновидность схемы Ларионова «Ларионовтреугольник» , но она имеет другие характеристики (эквивалентное внутреннее активное сопротивление, потери в меди и др. ).
презентация 2 Бажибаева А. РЭТ-10-4.pptx