
34b4f0cec9471ceb7e8a83cdd1c1ad4b.ppt
- Количество слайдов: 56
Precision Macromolecular Chemistry group (PMC) Charles Sadron Institute - UPR 22 CNRS European Engineering School of Chemistry, Polymers and Materials Science University of Strasbourg Intensification of NMP and ATRP (co)polymer syntheses by microreaction technologies Prof. Christophe A. Serra Caine Rosenfeld, Florence Bally, Dambarudhar Parida, Dhiraj Garg http: //ics-cnrs. unistra. fr/caserra Atelier de Prospective du GFP, Paris, Dec. 4 th, 2014
Outline § 1. Context § 2. Microprocess overview § 3. Results Ø Synthesis of linear, block and branched (co)polymers – Influence of micromixing – Influence of microreactor geometry – Influence of pressure Ø CFD Analysis § 4. Conclusion 2
Outline § 1. Context § 2. Microprocess overview § 3. Results Ø Synthesis of linear, block and branched (co)polymers – Influence of micromixing – Influence of microreactor geometry – Influence of pressure Ø CFD Analysis § 4. Conclusion 3
1. Context § Motivation Ø Synthesis of architecture-controlled (co)polymers – Block, linear or branched architectures • low PDI, defined MW – Applications in drug delivery, photoresist Ø Two-fold strategy – Chemistry • Rely on controlled/”Living” polymerization techniques » ATRP, NMP » Intrinsically “slow” reactions – Process • Development of an intensified and integrated continuous-flow microprocess 4
Outline § 1. Context § 2. Microprocess overview § 3. Results Ø Synthesis of linear, block and branched (co)polymers – Influence of micromixing – Influence of microreactor geometry – Influence of pressure Ø CFD Analysis § 4. Conclusion 5
2. Overview § Polymerization microprocess Synthesis (CMS) Monomer A Solvent Initiator Pump µreactor 1 µmixer Monomer B µreactor 2 Copolymer Pump Rosenfeld et al. , React. Eng. , 1 (5) (2007) 547 -552; Bally et al. , React. Eng. , 5 (11 -12) (2011) 542– 547 6
2. Overview § Polymerization microprocess Synthesis (CMS) Monomer A Solvent Pump Initiator µreactor 1 µmixer Monomer B µreactor 2 Copolymer Pump Analysis (COA) Solvent Eluate Injection GPC Column Dilution Waste Train of detectors Rosenfeld et al. , React. Eng. , 1 (5) (2007) 547 -552; Bally et al. , React. Eng. , 5 (11 -12) (2011) 542– 547 7
2. Overview § Polymerization microprocess Synthesis (CMS) Monomer A Solvent Pump Initiator solvent µreactor 1 µmixer Monomer B Recovery (IPR) µreactor 2 Copolymer µmixer nanoparticles µmixer Non solvent Pump Analysis (COA) Solvent Eluate Injection GPC Column Dilution Waste Train of detectors Rosenfeld et al. , React. Eng. , 1 (5) (2007) 547 -552; Bally et al. , React. Eng. , 5 (11 -12) (2011) 542– 547 8
2. Synthesis (CMS) § Continuous-microflow synthesis unit To COA 9
2. Synthesis (CMS) § Microreactors Ø Microtubular reactors (ID 876 µm) – Coiled tube (CT) 10
2. Synthesis (CMS) § Microreactors (cont’d) Ø Microtubular reactors (ID 876 µm) – Coiled tube (CT) – Coil flow inverter (CFI) End of the helix • Better mixing • Lower RTD After Ou tle t 1 st bend Inlet A. K. Saxena and K. D. P. Nigam, AICh. E J. , 1984, 30, 363 -368 After 2 nd bend 11
2. Microprocess features § Screening Ø Operating conditions – Flow rate, temperature, pressure, residence time, monomer concentration Ø Polymerization methods – FRP, CRP (NMP, ATRP, RAFT) § Rapid measurements Ø Analysis every 12 minutes § Libraries Ø Homopolymers Ø Copolymers 12
2. Microprocess features § Fully automated Ø Software controlled Ø Over night experiments – Pressure sensors – Temperature probes § Modular Ø New reaction blocks Ø New detectors – Raman – NIR § Inline polymer recovery Ø Colloidal suspension 13
Outline § 1. Context § 2. Microprocess overview § 3. Results Ø Synthesis of linear, block and branched (co)polymers – Influence of micromixing – Influence of microreactor geometry – Influence of pressure Ø CFD Analysis § 4. Conclusion 14
3. Copolymers (CMS) § Continuous one-step statistical copolymerization Ø Atom Transfer Radical Polymerization (ATRP) – Librairies of poly(DMAEMA-Bz. MA) / Influence of micromixer 15
3. Copolymers (CMS) § Continuous one-step statistical copolymerization Ø Continuous-flow setup 75°C 16
3. Copolymers (CMS) § Continuous one-step statistical copolymerization (cont’d) Ø Micromixers Name Principle Number of channels/ Inlet TJunction Bilamination 1 450 micron HPIMM Digital Multilamination 15 45 micron KM CC-2 Impact mixing 5 100 micron Parida et al. , Green. Proc. Synt. , 6 (1) (2012) 525 -532 Channel width 17
3. Copolymers (CMS) § Continuous one-step statistical copolymerization (cont’d) +35% Parida et al. , Green. Proc. Synt. , 6 (1) (2012) 525 -532 18
3. Copolymers (CMS) § Continuous one-step statistical copolymerization (cont’d) +6, 000 -50% Parida et al. , Green. Proc. Synt. , 6 (1) (2012) 525 -532 19
3. Copolymers (CMS) § Continuous one-step statistical copolymerization (cont’d) X 100 Parida et al. , Green. Proc. Synt. , 6 (1) (2012) 525 -532 20
3. Copolymers (CMS) § Continuous two-step block copolymerization PBA-b-PS Ø Nitroxide-Mediated Polymerization (NMP) – PBA-b-PS with low polydispersity index (PDI) • Mixing between viscous and liquid fluids by means of microstructured mixers 21
3. Copolymers (CMS) § Micromixers Fluid B Fluid A Mixing by … Bilamination Multilamination CF ML 45 ML 20 ML 50 Number of microchannels 1 16 15 10 Film thickness 450µm 45µm 20µm 50µm 22
3. Copolymers (CMS) § Sorting by form factor (F) Ø Bilamination Ø Multilamination 23
3. Copolymers (CMS) § Micromixers Fluid B Fluid A Mixing by … Bilamination Multilamination CF ML 45 ML 20 ML 50 Number of microchannels 1 16 15 10 Film thickness 450µm 45µm 20µm 50µm F 1 2. 8 3. 9 4. 6 24
3. Copolymers (CMS) § Continuous two-step block copolymerization (cont’d) Ø 1 st block Microtube Batch T 1 = 140°C t 1 = 190 min - 3: 1 vol. BA/Toluene - "High" [AX]0 Not purified - 5% mol. free TIPNO BA Conversion (%) 91 95 Theoretical Mn (g/mol) 33600 34900 Experimental Mn (g/mol) 26600 29700 PDI 1. 44 - 2 equiv. Acetic 1. 80 Rosenfeld et al. , Chem. Eng. Sci. , 62 (2007) 5245 -5250. anhydride 25
3. Copolymers (CMS) § Continuous two-step block copolymerization (cont’d) Ø Copolymer Batch process Continuous process T 2 = 125°C t 2 = 190 min Not purified ML 50 BA/S Conversions ML 20 CF BR 93% / 44% 96% / 50% 99% / 36% 99% / 50% Th. Mn (g/mol) 37100 40100 37800 43300 Exp. Mn (g/mol) 34700 36600 26600 33600 PDI 1. 28 1. 40 1. 73 1. 74 (1 H NMR) (PS equiv. ) Rosenfeld et al. , Chem. Eng. J. , 15 (S 1) (2008) S 242 -S 246 26
3. Copolymers (CMS) § Continuous two-step block copolymerization (cont’d) Ø Influence of the micromixer geometry 2 Q 2=9. 3 µL/min ML 20 Mainly controlled by the velocity CF 1. 8 PDI Ip - Most efficient micromixer tested: wider and fewer microchannels ML 45 1. 6 1. 4 ML 50 1. 2 0. 5 1. 5 2. 5 Re' F 3. 5 4. 5 Rosenfeld et al. , Lab. Chip. , 8 (2008) 1682 -1687 5. 5 27
Outline § 1. Context § 2. Microprocess overview § 3. Results Ø Synthesis of linear, block and branched (co)polymers – Influence of micromixing – Influence of microreactor geometry – Influence of pressure Ø CFD Analysis § 4. Conclusion 28
3. Microreactor geometry (CMS) § Recall one-step statistical copolymerization in CT PDI y 5000 it os c Vis 10000 15000 Mn 20000 25000 q Microreactor with internal mixing to overcome diffusion limitations 29
3. Microreactor geometry (CMS) § Linear polymers Ø Atom Transfer Radical Polymerization (ATRP) – Librairies of poly(DMAEMA) / CT vs. CFI 30
3. Microreactor geometry (CMS) § Linear polymers (cont’d) ID= 876 µm CT, 3 m CFI, 3 m q No significant increase in conversion between CT and CFI Parida et al. , Macromolecules, 47 (10) (2014) 3282– 3287. 31
3. Microreactor geometry (CMS) § Linear polymers (cont’d) ID= 876 µm CT, 3 m CFI, 3 m q Mn is higher in case of CFI (avg. +2000 g/mol) q Significant reduction in PDI for CFI (-0. 13) Parida et al. , Macromolecules, 47 (10) (2014) 3282– 3287. 32
3. Microreactor geometry (CMS) § RTD measurements CFI CT Reactor Variance (s²) Pe (-) Dax (m²/s) CT 605 286 2. 5 x 10 -5 CFI 322 1004 7. 14 x 10 -6 q RTD is narrower in CFI compared to CT q High Pe in case of both reactors indicates low axial dispersion Parida et al. , Macromolecules, 47 (10) (2014) 3282– 3287. 33
3. Microreactor geometry (CMS) § Branched polymers Ø Self-Condensing vinyl co. Polymerization, adapted to ATRP Inimer = Monomer + Initiator m m m a- b b m a m m I b m m* m b a * m m a m m* 2 -(2 -bromoisobutyryloxy)ethyl methacrylate (BIEM) Matyjaszewskiet al. , Macromolecules 1997, 30, 5192 34
3. Microreactor geometry (CMS) § Branched polymers (cont’d) 35
3. Microreactor geometry (CMS) § Branched polymers (cont’d) Ø DMAEMA and BIEM conversions + 7. 5% q Higher BIEM conversion for CFI Parida et al. , Macromolecules, 47 (10) (2014) 3282– 3287. 36
3. Microreactor geometry (CMS) § Branched polymers (cont’d) Ø GPC traces – Batch reactor q Presence of BIEM-initiated macromonomers/oligomers Parida et al. , Macromolecules, 47 (10) (2014) 3282– 3287. 37
3. Microreactor geometry (CMS) § Branched polymers (cont’d) Ø GPC traces (2 hrs) 5 % 10 % q Highest oligomeric units in batch q Lowest in CFI Parida et al. , Macromolecules, 47 (10) (2014) 3282– 3287. 38
3. Microreactor geometry (CMS) § Branched polymers (cont’d) Ø Polymer characteristics (BIEM 5 mol% @ 2 hrs) +700 -0. 28 q Mn exhibits the following trend: batch < CT < CFI q PDI follows the opposite trend: batch > CT > CFI Parida et al. , Macromolecules, 47 (10) (20141)3282– 3287 39
3. Microreactor geometry (CMS) § Branched polymers (cont’d) Ø Impact of flow inversion on molecular characteristics q Highest branching efficiency in CFI and lowest in batch q Controlled branched structure in microreactors especially in CFI Parida et al. , Macromolecules, 47 (10) (20141)3282– 3287 40
Outline § 1. Context § 2. Microprocess overview § 3. Results Ø Synthesis of linear, block and branched (co)polymers – – Influence of micromixing Influence of microreactor geometry Influence of pressure Scale-up Ø CFD Analysis § 4. Conclusion 41
3. Operating parameters (CMS) § Effect of pressure Ø Chemical system 42
3. Pressure (CMS) § Effect of pressure Ø Procedure 43
3. Pressure (CMS) § Effect of pressure (cont’d) Ø Polymer characteristics q Decrease in activation volume q Reduced termination q Increased density, thus increased residence time Parida et al. , J. Flow Chem. , 4 (2) (2014) 92 -96. 44
3. Pressure (CMS) § Effect of pressure (cont’d) Ø Microreactor dimension 576 µm 876 µm 1753 µm Parida et al. , J. Flow Chem. , 4 (2) (2014) 92 -96. 45
3. Pressure (CMS) § Effect of pressure (cont’d) Ø Microreactor dimension q Reduced diffusion distance Parida et al. , J. Flow Chem. , 4 (2) (2014) 92 -96. 46
Outline § 1. Context § 2. Microprocess overview § 3. Results Ø Synthesis of linear, block and branched (co)polymers – – Influence of micromixing Influence of microreactor geometry Influence of pressure Scale-up Ø CFD Analysis § 4. Conclusion 47
Inlet 48
Inlet Outlet 49
Inlet Outlet 50
Inlet Position of two tracer particles 51
Outline § 1. Context § 2. Microprocess overview § 3. Results Ø Synthesis of linear, block and branched (co)polymers – Influence of micromixing – Influence of microreactor geometry – Influence of pressure Ø CFD Analysis § 4. Conclusion 52
4. Conclusion § NMP and ATRP processes can be intensified Ø Ø Higher monomer conversion Higher MW Narrower MWD (lower PDI) Better controlled architecture (higher branching rates) § Microreactors and micromixers Ø Efficient intensification tools Ø New operating windows (Higher P, Higher T) Ø CFI – A chaotic mixer/reactor • Better internal mixing • Narrower RTD – Smaller foot print than ST 53
4. Acknowledgements Ø Faculty Ø Students – – – – N. Sary M. Quentin N. Berton C. Rosenfeld E. Godard B. Reynard A. Filliung J. Quillé C. Zhang S. Trotzier F. Bally C. Kister A. Ali P. Gonzales D. K. Garg D. Parida – – Ø Collaborators C. Brochon M. Bouquey R. Muller G. Hadziioannou Ø Staff – – – T. J. C. C. Djekrif Quillé / S. Gallet Mélart Ngov Sutter Kientz – T. Vandamme & N. Anton (CAMB) – K. Nigam (IIT Dehli) – Y. Hoarau (IMFS) Ø Industrial partners – S. O’Donohue (PL) – V. Hessel (IMM) Ø Financial support EAc 4379 « Ponts Couverts » in Strasbourg 54
Thank you for your attention 55
Increasing throughput § Polymer in solution 8 microtube reactors in parallel for the production of to 4 kg per week of PMMA Yoshida and coll. , Org. Process Res. Dev. , 10 (2006) 1126 -1131 56