zolotaya_spiral.ppt
- Количество слайдов: 14
Последовательно отсекая от золотых прямоугольников квадраты до бесконечности, каждый раз соединяя противоположные точки четвертью окружности, мы получим довольно изящную кривую. Первым внимание на неё обратил древнегреческий ученый Архимед, имя которого она и носит. Он изучал её и вывел уравнение этой спирали
В картине Рафаэля "Избиение младенцев" просматривается этот элемент золотой пропорции - золотая спираль. На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции - точки, где пальцы воина сомкнулись вокруг лодыжки ребенка - вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Неизвестно, строил ли Рафаэль золотую спираль или чувствовал её.
В композиции «Избиение младенцев» очень ярко проявляются эти черты великого мастера. В ней прекрасно сочетаются динамизм и гармония. Этому сочетанию способствует выбор золотой спирали за композиционную основу рисунка Рафаэля: динамизм ему придает вихревой характер спирали, а гармоничность - выбор золотого сечения как пропорции, определяющей развертывание спирали.
Другой пример композиции рисунка - картина Дега «Танцовщицы» . Динамика танца и его гармония здесь подчеркнуты «вихрем» танца, выраженным спиралью
Очень многие явления в природе описываются именно золотой спиралью. Расположение космических галактик, семян в шишке, завитков в раковине и многого другого подчинено закону золотой спирали. «Вечность времени и световые годы космоса разделяют сосновую шишку и спиральную галактику, но строение остается тем же самым: коэффициент 1, 618, возможно, первостепенный закон, управляющий активными природными явлениями. Таким образом, золотая спираль развертывается перед нами в символической форме, как один из величественных замыслов природы, образ жизни в бесконечном расширении и сжатии, статический закон, управляющий динамическим процессом, подкрепленный и изнутри и снаружи пропорцией 1, 618, золотым сечением» .
По закону подобия, спираль нашей Галактики должна лежать в основе природных спиралей. Например, жилая камера моллюска наутилуса в его спиральной раковине занимает такое же место, как наша Солнечная система в Галактике "Млечный Путь" Неудивительно, что пропорции Золотого Сечения Φ определяют строение живых организмов, а числа последовательности Фибоначчи лежат в основе многих процессов в природе.
Чи сла Фибона ччи — элементы числовой последовательности 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597 … в которой каждое последующее число равно сумме двух предыдущих чисел. Название по имени средневекового математика Леонардо Пизанского (или Фибоначчи) Более формально, последовательность чисел Фибоначчи задается рекуррентным соотношением:
Между рядом Фибоначчи и треугольником Паскаля существует любопытная связь. Образуем для каждой восходящей диагонали треугольника Паскаля сумму всех стоящих на этой диагонали чисел. Получим для первой диагонали 1, для второй 1, для третьей 2, для четвертой 3, для пятой 5. Мы получили не что иное, как числа Фибоначчи. казывается, О что всегда сумма чисел nй диагонали есть n-е число Фибоначчи.
Блез Паскаль (1623— 1662) — один из самых знаменитых людей в истории человечества. Ему посвящено огромное количество литературы. Паскаль умер, когда ему было 39 лет, но, несмотря на столь короткую жизнь, он вошел в историю как выдающийся математик, физик, философ и писатель. Треугольник Паскаля - это просто бесконечная числовая таблица "треугольной формы", в которой на вершине и по боковым сторонам стоят единицы, каждое из остальных чисел равно сумме двух чисел, стоящих над ним слева и справа в предшествующей строке. Таблица обладает симметрией относительно оси, проходящей через его вершину.
zolotaya_spiral.ppt