fa2ef24349affeaa63b466dc4f2941ce.ppt
- Количество слайдов: 38
Performance Instrumentation and Measurement for Terascale Systems Jack Dongarra, Shirley Moore, Philip Mucci University of Tennessee Sameer Shende, and Allen Malony University of Oregon June 2, 2003 ICCS 2003 1
Requirements for Terascale Systems • Performance framework must support a wide range of – Performance problems (e. g. , single-node performance, synchronization and communication overhead, load balancing) – Performance evaluation methods (e. g. , parameter-based modeling, bottleneck detection and diagnosis) – Programming environments (e. g. , multiprocess and /or multithreaded, parallel and distributed, large-scale) • Need for flexible and extensible performance observation framework June 2, 2003 ICCS 2003 2
Research Problems • Appropriate level and location for implementing instrumentation and measurement • How to make the framework modular and extensible • Appropriate compromise between level of detail/accuracy and instrumentation cost June 2, 2003 ICCS 2003 3
Instrumentation Strategies • Source code instrumentation – Manual or using preprocessor • Library level instrumentation – e. g. , MPI and Open. MP profiling interfaces • Binary rewriting – E. g. , Pixie, ATOM, EEL, PAT • Dynamic instrumentation – Dyninst. API June 2, 2003 ICCS 2003 4
Types of Measurements • Profiling • Tracing • Real-time Analysis June 2, 2003 ICCS 2003 5
Profiling • Recording of summary information during execution – inclusive, exclusive time, # calls, hardware statistics, … • Reflects performance behavior of program entities – functions, loops, basic blocks – user-defined “semantic” entities • Very good for low-cost performance assessment • Helps to expose performance bottlenecks and hotspots • Implemented through – sampling: periodic OS interrupts or hardware counter traps – instrumentation: direct insertion of measurement code June 2, 2003 ICCS 2003 6
Tracing – Recording of information about significant points (events) during program execution • entering/exiting code region (function, loop, block, …) • thread/process interactions (e. g. , send/receive message) – Save information in event record • timestamp • CPU identifier, thread identifier • Event type and event-specific information – Event trace is a time-sequenced stream of event records – Can be used to reconstruct dynamic program behavior – Typically requires code instrumentation June 2, 2003 ICCS 2003 7
Real-time Analysis • Allows evaluation of program performance during execution • Examples – Paradyn – Autopilot – Perfometer June 2, 2003 ICCS 2003 8
TAU Performance System Architecture Paraver June 2, 2003 ICCS 2003 EPILOG 9
TAU Instrumentation • Manually using TAU instrumentation API • Automatically using – Program Database Toolkit (PDT) – MPI profiling library – Opari Open. MP rewriting tool • Uses PAPI to access hardware counter data June 2, 2003 ICCS 2003 10
Program Database Toolkit (PDT) • Program code analysis framework for developing source-based tools • High-level interface to source code information • Integrated toolkit for source code parsing, database creation, and database query – commercial grade front end parsers – portable IL analyzer, database format, and access API – open software approach for tool development • Targets and integrates multiple source languages • Used in TAU to build automated performance instrumentation tools June 2, 2003 ICCS 2003 11
PDT Components • Language front end – Edison Design Group (EDG): C, C++ – Mutek Solutions Ltd. : F 77, F 90 – creates an intermediate-language (IL) tree • IL Analyzer – processes the intermediate language (IL) tree – creates “program database” (PDB) formatted file • DUCTAPE (Bernd Mohr, ZAM, Germany) – C++ program Database Utilities and Conversion Tools APplication Environment – processes and merges PDB files – C++ library to access the PDB for PDT applications June 2, 2003 ICCS 2003 12
TAU Analysis • Profile analysis – pprof • parallel profiler with text-based display – Racy / j. Racy • graphical interface to pprof (Tcl/Tk) • j. Racy is a Java implementation of Racy – Para. Prof • Next-generation parallel profile analysis and display • Trace analysis and visualization – – Trace merging and clock adjustment (if necessary) Trace format conversion (ALOG, SDDF, Vampir) Vampir (Pallas) trace visualization Paraver (CEPBA) trace visualization June 2, 2003 ICCS 2003 13
TAU Pprof Display June 2, 2003 ICCS 2003 14
jracy (NAS Parallel Benchmark – LU) Global profiles Routine profile across all nodes n: node c: context t: thread Individual profile June 2, 2003 ICCS 2003 15
Para. Prof Scalable Profiler • Re-implementation of j. Racy tool • Target flexibility in profile input source – Profiles, performance database, online • Target scalability in profile size and display – Will include three-dimensional display support • Provide more robust analysis and extension – Derived performance statistics June 2, 2003 ICCS 2003 16
Para. Prof Architecture June 2, 2003 ICCS 2003 17
512 -Processor Profile (SAMRAI) June 2, 2003 ICCS 2003 18
Three-dimensional Profile Displays 500 -processor Uintah execution (University of Utah) June 2, 2003 ICCS 2003 19
Overview of PAPI • Performance Application Programming Interface • The purpose of the PAPI project is to design, standardize and implement a portable and efficient API to access the hardware performance monitor counters found on most modern microprocessors. • Parallel Tools Consortium project • References implementations for all major HPC platforms • Installed and in use at major government labs, academic sites • Becoming de facto industry standard • Incorporated into many performance analysis tools – e. g. , HPCView, Sv. Pablo, TAU, Vampir, Vprof June 2, 2003 ICCS 2003 20
PAPI Counter Interfaces • PAPI provides three interfaces to the underlying counter hardware: 1. The low level interface provides functions for setting options, accessing native events, callback on counter overflow, etc. 2. The high level interface simply provides the ability to start, stop and read the counters for a specified list of events. 3. Graphical tools to visualize information. June 2, 2003 ICCS 2003 21
PAPI Implementation Tools Portable PAPI Low Level Layer Machine Specific Layer PAPI High Level PAPI Machine Dependent Substrate Kernel Extension Operating System Hardware Performance Counter June 2, 2003 ICCS 2003 22
PAPI Preset Events • Proposed standard set of events deemed most relevant for application performance tuning • Defined in papi. Std. Event. Defs. h • Mapped to native events on a given platform – Run tests/avail to see list of PAPI preset events available on a platform June 2, 2003 ICCS 2003 23
Scalability of PAPI Instrumentation • Overhead of library calls to read counters can be excessive. • Statistical sampling can reduce overhead. • PAPI substrate for Alpha Tru 64 UNIX – Built on top of DADD/DCPI (Dynamic Access to DCPI Data/Digital Continuous Profiling Interface) – Sampling approach supported in hardware – 1 -2% overhead compared to 30% on other platforms • Using sampling and hardware profiling support on Itanium/Itanium 2 June 2, 2003 ICCS 2003 24
Vampir v 3. x: Hardware Counter Data • Counter Timeline Display June 2, 2003 ICCS 2003 25
What is Dyna. Prof? • A portable tool to instrument a running executable with Probes that monitor application performance. • Simple command line interface. • Open Source Software • A work in progress… June 2, 2003 ICCS 2003 26
Dyna. Prof Methodology • Make collection of run-time performance data easy by: – Avoiding instrumentation and recompilation – Using the same tool with different probes – Providing useful and meaningful probe data – Providing different kinds of probes – Allowing custom probes June 2, 2003 ICCS 2003 27
Why the “Dyna”? • Instrumentation is selectively inserted directly into the program’s address space. • Why is this a better way? – No perturbation of compiler optimizations – Complete language independence – Multiple Insert/Remove instrumentation cycles June 2, 2003 ICCS 2003 28
Dyna. Prof Design • GUI, command line & script driven user interface • Uses GNU readline for command line editing and command completion. • Instrumentation is done using: – Dyninst on Linux, Solaris and IRIX – DPCL on AIX June 2, 2003 ICCS 2003 29
Dyna. Prof Commands load
Dyna. Prof Probe Design • Probes provided with distribution – Wallclock probe – PAPI probe – Perfometer probe • Can be written in any compiled language • Probes export 3 functions with a standardized interface. • Easy to roll your own (<1 day) • Supports separate probes for MPI/Open. MP/Pthreads June 2, 2003 ICCS 2003 31
Future development • GUI development • Additional probes – Perfex probe – Vprof probe – TAU probe • Better support for parallel applications June 2, 2003 ICCS 2003 32
Perfometer • Application is instrumented with PAPI – call perfometer() – call mark_perfometer(int color, char *label) • Application is started. At the call to perfometer, signal handler and a timer are set up to collect and send the information to a Java applet containing the graphical view. • Sections of code that are of interest can be designated with specific colors • Real-time display or trace file June 2, 2003 ICCS 2003 33
Perfometer Display Machine info Flop/s Rate Flop/s Min/Max Process & Real time June 2, 2003 ICCS 2003 34
Perfometer Parallel Interface June 2, 2003 ICCS 2003 35
Conclusions • TAU and PAPI projects are addressing important research problems involved in constructing a flexible and extensible performance observation framework. • Widespread adoption of PAPI demonstrates the value of a portable interface to low-level architecture-specific performance monitoring hardware. • TAU framework provides flexible mechanisms for instrumentation and measurement. June 2, 2003 ICCS 2003 36
Conclusions (cont. ) • Terascale systems require scalable low-overhead means of collecting performance data. – Statistical sampling support in PAPI – TAU filtering and feedback schemes for focusing instrumentation – Real-time monitoring capabilities (Dynaprof, Perfometer) • PAPI and TAU infrastructure is designed for interoperability, flexibility, and extensibility. June 2, 2003 ICCS 2003 37
More Information • • TAU (http: //www. acl. lanl. gov/tau) PDT (http: //www. acl. lanl. gov/pdtoolkit) PAPI (http: //icl. cs. utk. edu/papi/) OPARI (http: //www. fz-juelich. de/zam June 2, 2003 ICCS 2003 38