Скачать презентацию P 2 P vs ISP Ofir Israel Guy Скачать презентацию P 2 P vs ISP Ofir Israel Guy

a6df78904343456fb1e10c823ed5f3e4.ppt

  • Количество слайдов: 61

P 2 P vs. ISP Ofir Israel Guy Paskar P 2 P vs. ISP Ofir Israel Guy Paskar

An Internet Tale Once upon a time. . Users unhappy (slow connection) ISPs unhappy An Internet Tale Once upon a time. . Users unhappy (slow connection) ISPs unhappy (poor revenues) Then came Broadband access. . . And everybody were happy

The Villain arrives P 2 P File-Sharing Applications (Kazaa, e. Mule, Bit. Torrent, etc. The Villain arrives P 2 P File-Sharing Applications (Kazaa, e. Mule, Bit. Torrent, etc. . ) Users love it! Good and free content, overnight downloads ISPs hate it! Users using their entire link Internet link utilization gone wild More bandwidth costs more money!

But is it really a villain? Users love it Driving force for broadband adoption But is it really a villain? Users love it Driving force for broadband adoption Increased revenues for ISPs What should the ISPs do? ?

Some Ideas User unfriendly ideas Increase subscription cost Volume-based pricing Block/shape P 2 P Some Ideas User unfriendly ideas Increase subscription cost Volume-based pricing Block/shape P 2 P traffic (priority for non-P 2 P packets) User friendly ideas Acquire more BW Network caching

Today. . Generally understand the problem – DONE! (? ) Describe an analytical model Today. . Generally understand the problem – DONE! (? ) Describe an analytical model to help us understand situation better Describe one practical solution and it’s empirical results (Hint: it works)

Research Goals • Modeling framework to analyze interactions between P 2 P File-Sharing users Research Goals • Modeling framework to analyze interactions between P 2 P File-Sharing users and their ISPs • Basic insight about system dynamics • Used to evaluate different strategies to manage P 2 P traffic

Meet the Players User Generates queries (P 2 P application finds the object and Meet the Players User Generates queries (P 2 P application finds the object and retrieves it) Pays a subscription price, has Qo. S expectations What’s popular, what’s not ISP Goal: TO MAKE MONEY Sets subscription price Controls bandwidth Influences P 2 P app behavior

System Setting n users inside ISP User-ISP ul. , dl. bandwidt h ISP-ISP ul. System Setting n users inside ISP User-ISP ul. , dl. bandwidt h ISP-ISP ul. , dl. bandwidth User generates query Gets a response from within the ISP Or from a user in another ISP N users in the world

The Simple System Model Aggregate Average query rate Prob. P 2 P App. locates The Simple System Model Aggregate Average query rate Prob. P 2 P App. locates object Prob. Object is located inside ISP Unconstrained downloads from within the ISP Model for “Internet to ISP” link Object retrieval prob. (Qo. S): System throughput

User Utility Function Benefit Shape parameter Cost Subscription cost Object retrieval prob. Users subscribe User Utility Function Benefit Shape parameter Cost Subscription cost Object retrieval prob. Users subscribe only if: Equivalently, if: user i is the minimal service level acceptable by

ISP Utility Function Benefit Revenues from subscribers’ fee ISP starts service only if: Fixed ISP Utility Function Benefit Revenues from subscribers’ fee ISP starts service only if: Fixed cost Cost per unit of BW

Traffic Locality Probability that there exists at least one internal replica of object replicated Traffic Locality Probability that there exists at least one internal replica of object replicated r times in the system Number of files inside ISP Number of files outside ISP Probability to download from internal replica Locality parameter

Minimum BW Reminder: So: Assuming We get Minimum BW Reminder: So: Assuming We get

Minimum BW Non-linear behavior (on n) More users more locality less BW needed Can Minimum BW Non-linear behavior (on n) More users more locality less BW needed Can be zero if n large enough (self-sustainability) Dependant on multiple parameters Self-Sustainability

Simple(? !) Model Simple(? !) Model

Impact of Object Replication (r) More replicas Better locality Lower Bd needed Bmin has Impact of Object Replication (r) More replicas Better locality Lower Bd needed Bmin has two roots: x 1 – No users, x 2 – Enough users for selfsustainability

Impact of external Qo. S ( ) Higher external Qo. S More BW needed Impact of external Qo. S ( ) Higher external Qo. S More BW needed (because there are more replicas externally)

Impact of prob. to locate objects (q) Some ISPs drop queries. This graph shows Impact of prob. to locate objects (q) Some ISPs drop queries. This graph shows them different.

Impact of prob. to retrieve objects internally (Gamma) Det. by the ability to find Impact of prob. to retrieve objects internally (Gamma) Det. by the ability to find a local object given that it exists. Can be influenced by the ISP – this graph shows it should.

Model Refinements Simple Model Users’ access BW are unconstrained Object popularity is identical Users Model Refinements Simple Model Users’ access BW are unconstrained Object popularity is identical Users availability identical Refined Model Relax these assumptions Propose object popularity and replication model

Model Refinements We adopt a processor sharing model with rate limit bd to describe Model Refinements We adopt a processor sharing model with rate limit bd to describe the sharing of Bd Now each user is limited by it’s own BW. Queue Model

Model Refinements We introduce a new parameter: that describes user patience Denote b as Model Refinements We introduce a new parameter: that describes user patience Denote b as the initial download rate, and assuming the decision to abort is made at the beginning then the prob. pg to continue the transfer is: Larger eta user claims to get a rate close to what they paid for

Bmin as a function of bd=bu with different values of gamma Higher gamma smaller Bmin as a function of bd=bu with different values of gamma Higher gamma smaller bu needed for self-sustainability Optimal gamma is not gamma=1 !!! For bu < 250 the BW available inside the ISP is not enough to satisfy demanding users

Impact of asymmetric access BWs Cost for ISP increases as ratio increases (what about Impact of asymmetric access BWs Cost for ISP increases as ratio increases (what about ADSL? ? ) Larger bu Better locality lower Bd

Conclusions Locality is good for the ISPs More replicas, larger querying probability, larger upload Conclusions Locality is good for the ISPs More replicas, larger querying probability, larger upload bandwidth for users’ access, larger probability to retrieve objects internally (gamma) SELF SUSTAINABILITY == GOOD Reading slow leads to better understanding

Further Reading Original paper of course: Garetto et al, “A modeling framework to understand Further Reading Original paper of course: Garetto et al, “A modeling framework to understand the tussle between ISPs and peer-topeer file-sharing users” in Performance Evaluation, June 2007 Same as the original paper but talks about ISP-ISP connections: Wang et al, “Modeling the Peering and Routing Tussle between ISPs and P 2 P Applications” in the proceedings of IWQo. S 2006

BREAK ? BREAK ?

Academic Work Oracle-based vs. non-Oracle-based (e. g. , with ISP cooperation or without) Legality Academic Work Oracle-based vs. non-Oracle-based (e. g. , with ISP cooperation or without) Legality issues, reluctance issues Improvements via locality research Network location or Geographic location? Which method of network location? Improvements via redirection research Can we redirect traffic to inexpensive links? Many more

Part 2 Taming the Torrent - A Practical Approach to Reducing Cross-ISP Traffic in Part 2 Taming the Torrent - A Practical Approach to Reducing Cross-ISP Traffic in Peer-to-Peer Systems David R. Choffnes and Fabián E. Bustamante

The problem Over 66% of P 2 P users & growing But how do The problem Over 66% of P 2 P users & growing But how do we know which peer to choose? Which peers? Trackers provide a random subset of peers in the torrent Random peer connections → growing ISP operation costs. So , how do we know if a suggested peer is inside our Isp or outside? We want to reduce cross isp transport. Meaning use the “closest” peers. But , how can we do that?

The ISP Perspective P 2 P performance - key factor for service upgrade & The ISP Perspective P 2 P performance - key factor for service upgrade & selection by users A major engineering challenge for ISPs ≈70% of the Internet traffic But , a lot of cross isp , means a lot of cost for the Isp. What can the isp do in order to fight the p 2 p users?

Isp methods and its problems ISPs shape traffic directed to standard ports P 2 Isp methods and its problems ISPs shape traffic directed to standard ports P 2 Ps move to dynamic, non-standard ports ISPs turn to deep-packet inspection to identify & shape P 2 P flows P 2 Ps encrypt their connections ISPs place caches and/or spoofs TCP RST msgs Legality issues. (Some ways to overcome this – in Israel!) So good solution must be agreed by the p 2 p users!

One solution: Oracles. Suggestion – the isp’s itself will have to implement an oracle, One solution: Oracles. Suggestion – the isp’s itself will have to implement an oracle, this oracles will guide the user which peers to choose. Help reduce cross-ISP traffic This solution looks appealing But: Assumes P 2 P users & ISPs trust each other Misses incentive for user adoption Therefore not so good after all 34

The authors suggestion CDN’S – content distribution network. What is it? CDNs attempt to The authors suggestion CDN’S – content distribution network. What is it? CDNs attempt to improve web performance by redirecting requests to replica servers The goal is to help content providers (i. e. CNN) to distribute content by redirecting requests to replica servers that are: Topologically proximate Provide lower-latency But how do they do that?

How does CDN work? There are some ways that a CDN works by for How does CDN work? There are some ways that a CDN works by for example: Way 1 : I want to go to cnn. com dns lookup , directs me to the domain name of the CDN (cnn. akamai. com) CDN sends me to the right replica. Way 2: I want to go to cnn. com dns lookup first page from original cnn. com, directs me to CDN server sends to right replica.

Reusing CDNs’ network views Client’s request redirected to “nearby” server Client gets web site’s Reusing CDNs’ network views Client’s request redirected to “nearby” server Client gets web site’s DNS CNAME entry with domain name in CDN network Hierarchy of CDN’s DNS servers direct client to nearby servers Multiple redirections to find nearby edge servers Internet Hierarchy of CDN DNS servers Customer DNS servers Web replica servers (3) Clients and replica servers Client is givenareweb replica 2 “nearby”] (4) servers (fault tolerance) Client gets CNAME entry (2) with domain name in Akamai Client requests translation for Yahoo LDNS (5) (1) (6) Web client 37 Another web client

The authors suggestion So how do we use CDN? We are going to recycle The authors suggestion So how do we use CDN? We are going to recycle data that is already being collected by Content Distribution Networks, and use it. But how? By simply comparing DNS redirections. Assumptions : Links between “nearby” hosts cross few ISPs If two hosts are close to the same CDN replica servers, they are close to each other

Reducing cross-ISP traffic So we can use the CDN’s data, what are the advantages Reducing cross-ISP traffic So we can use the CDN’s data, what are the advantages for this recycilng? Does not requires any trust between isp and p 2 p users The infrastructure is already exist And most importantly reduces cross isp traffic without harming the p 2 p users (even improving)

An approach to reducing cross isp Introducing “Ono” Extension (plugin) to Azureus Bit. Torrent An approach to reducing cross isp Introducing “Ono” Extension (plugin) to Azureus Bit. Torrent client Will use CDN and ratio maps(? ) to determine who is “closer” We will describe its implementation q Uses multiple CDN customers Only DNS resolution, no content download needed Adaptive lookup rates on CDN names Represent redirection behavior using ratio-maps

Ratio Maps A ratio map represents the frequency of redirecting to a specific replica Ratio Maps A ratio map represents the frequency of redirecting to a specific replica Number of replicas is usually small (max 31) Keep a time window about 24 hours How does it looks?

Ratio maps represantation The ratio map of a peer (a) is a set of Ratio maps represantation The ratio map of a peer (a) is a set of (replica server, ratio) for peer a Specifically, if peer a is redirected toward replica server r 1 75% of the time window, and toward replica server r 2 25% of the time window, then the corresponding ratiomap is The sum of all in a given ratio map equals one For each peer there exist a ratio map But what can we do with it?

choosing peers by ratio map 2 peers has close ratio map , than we choosing peers by ratio map 2 peers has close ratio map , than we say that they are close. ( possibly in the same network), and the ooposit So , we need a calculation that will determine for 2 peers if they are “close” or not. Than we can check for all available peers and choose the “closest” one For that we define cosine similarity for 2 peers

Cosine-similarity the cosine similarity of two maps will range from 0 to 1, since Cosine-similarity the cosine similarity of two maps will range from 0 to 1, since the term frequencies cannot be negative If cos_sim(a, b) = 0 , the vectors are orthogonal if cos_sim(a, b) = 1 than they are the same This is very close to dot product And we determine a threshold currently 0. 15 , if cos_sim(a, b)>0. 15 than we recommend these peers as close

Implementation Ono, an extension to Azureus client Performs periodic DNS lookups on popular CDN Implementation Ono, an extension to Azureus client Performs periodic DNS lookups on popular CDN and create a ratio map Periodically updates the ratio-maps Exchanging ratio maps for cos-sim(a, b): On Handshake From trackers q But how do we deal with peers not using Ono? Ono also attempts to perform DNS lookups on behalf of other peers that it encounters, to determine their ratio maps q How? q Taken from Ono code : getting the other peer DNS server q And querying it q

So what's now? Get ratio information from other peers that got from tracker , So what's now? Get ratio information from other peers that got from tracker , and understand who is close When determine similar redirection behavior, attempts to bias traffic towards that peer by ensuring that the connection is always on Sends Ono information to supporting trackers(in case of supporting trackers) But what is the cost? How much is our overhead? 18 KB upstream, 36 KB downstream per day Computation of cosine-similarity is easy

Important notes CDN names being used: Initialization of ratio map: DNS on each CDN Important notes CDN names being used: Initialization of ratio map: DNS on each CDN name at most once every 30 sec. for 2 min. this gives basis ratio map After this phase If the redirection info for CDN name similar to prev. query the interval between queries increases by 1 min. Otherwise the interval is halved(to a min. of 30 sec. )

Some statistics regarding Ono Details for 2007 : > 195, 000 users worldwide … Some statistics regarding Ono Details for 2007 : > 195, 000 users worldwide … collecting ~15 GB of data per day

Empirical results Over 120, 000 peers use Ono collects extra network data Samples transfer Empirical results Over 120, 000 peers use Ono collects extra network data Samples transfer rates for each connection every 5 sec. Get RTT for endpoint using pings Get Trace-route between end points Note : Not easy to determine cross-ISP hops IP hops is easy and gives some measure

Empirical resualts So in practice Trace Route gives a router level views of path Empirical resualts So in practice Trace Route gives a router level views of path between hosts. BUT an ISP can contain many routers, we wish for a metric that is closely correspond to ISP hops. How do we get this metric? Autonomous systems , how? Although there is no 1 to 1 correlation between AS and ISPs, the number of AS hops gives us an upper bound estimate on the number of cross-ISP hops So in practice we generate AS level path info from our trace-routes using mapping that can be provided Example :

Example Example

Empirical results Ono finds shorter paths Median in less than half More than 20% Empirical results Ono finds shorter paths Median in less than half More than 20% are only one hop away, via less than 2%

Reducing cross-ISP traffic Average number of AS hops to reach Onorecommended/random peers > 30% Reducing cross-ISP traffic Average number of AS hops to reach Onorecommended/random peers > 30% of paths to Ono-recommended peers do not leave the AS of origin Note BT curve includes all peers, either Ono -recommended or randomly selected 53

Finding nearby peers Two orders of magnitude difference And, on average, 31% lower loss Finding nearby peers Two orders of magnitude difference And, on average, 31% lower loss rates! 54

Improving transfer performance Heavy Tail – Average performance improves by 31% DSL in England Improving transfer performance Heavy Tail – Average performance improves by 31% DSL in England -- 4/8 Mbps down, only 768 Kbps up ISP bandwidth allocation policy brings bottleneck help, the accessislink to it difference ~2 KB/s Even when Ono doesn’t Medianallows BT to naturally select faster peers 55

… with the right bandwidth allocation policy Romania: 50 Mb/s in metro-area, 4 Mb/s … with the right bandwidth allocation policy Romania: 50 Mb/s in metro-area, 4 Mb/s outside 883% median improvement 56

Helpful ISPs can help themselves 57 Helpful ISPs can help themselves 57

Duscussion Absolute network positioning system , and just throw away the “far” peers Problem Duscussion Absolute network positioning system , and just throw away the “far” peers Problem – all peers must take a part in the service, in contrast to our method Use just AS numbers There are ISPs (like comcast) that have many AS numbers, so using these numbers can restrict cross-AS traffic that is not cross-ISP traffic

Conclusion Recycling network views collected by CDNs The method reduces cross-ISP traffic Performance of Conclusion Recycling network views collected by CDNs The method reduces cross-ISP traffic Performance of peers is not effected(we saw this) Scalable (the more clients adopt it, the more accurate the bias would get) Available easily and freely Therefore the method is good and can provide good results in reducing Cross-ISP traffic

Question TBD Question TBD

Extras Extras