ef07a1554176705765c407d65d7cc4e9.ppt
- Количество слайдов: 38
Ozone Depletion Measurements In Souther Patagonia Elian Wolfram Centro de Investigaciones en Láseres y Aplicaciones (LASER RESEARCH CENTER AND APPLICATIONS ) (CITEDEF-CONICET) Buenos Aires - Argentina
Staff of Lidar Division of CEILAP Dr. Eduardo J. Quel /CITEDEF Dr. Elian Wolfram /CITEDEF-CONICET Dra. Lidia Otero /CITEDEF -CONICET Dr. Pablo Ristori /CITEDEF Ing. Marcelo Raponi/CITEDEF -Ph. D Sdt Ing. Jacobo Salvador/CITEDEF - Ph. D Std Ing. Juan Pallota/CITEDEF /Ph. D Std Ing. Ezequiel Pawelko /CITEDEF /Ph. D Std Geof. Gabriela Nicora/CITEDEF Fellow Lic. Facundo Orte/ANCYPT Fellow Tec. Daniela Bulnes/CITEDEF Est. Carla Repetto/UTN Fellow Tec. E. Martorella/CITEDEF Tec. Raúl D´Elía/CONICET Ing. J. C. Dworniczak/CITEDEF Ing. Francisco González/CITEDEF Tec. Osvaldo Vilar/CITEDEF
Staff of Lidar Division of CEILAP Peoples involved in Ozone Studies from Argentine Side French Partners q Dr. Sophie Godin-Beekman LATMOS/IPSL/CNRS Dr. Eduardo J. Quel /CITEDEF Dr. Elian Wolfram /CITEDEF-CONICET q Dr. Florance Goutail LATMOS/UVSQ/CNRS q Dr. Andrea Pazmiño LATMOS/UVSQ/CNRS Dra. Lidia Otero /CITEDEF -CONICET q Ing. Jacques Porteneuve (retired) Dr. Pablo Ristori /CITEDEF Ing. Marcelo Raponi/CITEDEF -Ph. D Sdt Ing. Jacobo Salvador/CITEDEF - Ph. D Std Ing. Juan Pallota/CITEDEF /Ph. D Std Ing. Ezequiel Pawelko /CITEDEF /Ph. D Std Geof. Gabriela Nicora/CITEDEF Fellow Lic. Facundo Orte/ANCYPT Fellow Tec. Daniela Bulnes/CITEDEF Est. Carla Repetto/UTN Fellow Tec. E. Martorella/CITEDEF Tec. Raúl D´Elía/CONICET Ing. J. C. Dworniczak/CITEDEF Ing. Francisco González/CITEDEF Tec. Osvaldo Vilar/CITEDEF
Two Remote Sensing Sites
Río Gallegos Site (CEILAP-RG) Province of Santa Cruz, Argentine Patagonia. Lat: 51º 36’ S, Lon: 69º 19’ W. Military Air Force Base, Río Gallegos - Fuerza Aérea Argentina (FFAA)
Instrumental Capabilities
Principle of LIDAR measurement Ligth Detection And Ranging Backscatter radiation Altitude= ct/2 Lidar Signal Altitude Aerosol Mie Scattering Rayleigh Scattering Back Scattering signal Our measurements: • Clean Night Condition • 2 -3 hs integration time Emission (laser) Reception (Telescope)
Lambda Physik LSX 210 i Excimer laser (Xe. Cl) Emitted wavelength 308 nm Emitted energy Repetition rate Divergence ~200 m. J/pulse (max. 300 m. J/pulse) 30 Hz (max. 100 Hz) 0. 4 mrad Quantel 980 Nd-YAG Laser • Emitted wavelength • Emitted energy • Repetition rate • Divergence 1. 06 m, 532 nm, 355 nm ~40 m. J/pulse (max. 130 m. J/pulse) @355 30 Hz (max. 30 Hz) 0. 6 mrad
Mechanical Chopper Entrance Slit Fiber Optics
Holographic Grating 3600 gr/mm Dispersion 0. 3 nm/mm Spectral bandwidth 1 nm Transmittance @ 300 nm 40 % 308 nm 387 nm 355 nm 347 nm 332 nm
6 PMTs Hamamatsu • Gated photomultipliers for 308, 355 nm • Low dark current, • adapted for photo counting Acquisition • 6 Independent channels processing, stock of signals • Discriminators 1/channel • High speed counters 300 MHz 1024 time gates of 1 s (150 m) • Max. count rate 40 -60 counts/ s • Chopper yes/not (trigger -> quartz crystal) • On-line visualization: signals, slopes, profile & total O 3
Re AL ad Oz y on to e m I Tr an ea nstru O Ri f In spo sure men o st rta t G ru ti me on al le n go t t s. S o ite SO LA R Ca mp ai gn Sta UV rt w Pr O 3 ith oje Pa ct ta go Ad nia mi Ins t. ssio To n ND of AC DIA C LO Fir Ca st O Net zon wo e mp zo rk ai ne 2 n gn So Ca d O in R nde mp zo ío ai ne Ga gn S on lleg de os DI Events Little History of RG Site Events 2004 Jun 2005 Aug 2005 -Dec 2006 Sep 2007 Dec 2008 Mar 2010 Mar 2011 Time
Statistics of Stratospheric Ozone Measurements 14 12 10 10 8 8 6 6 Series 1 4 4 2 2 0 Number of Samples 12 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Number of Samples 9 8 7 6 5 Series 1 4 3 2 1 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Series 1 Jul Aug Sep Oct Nov Dec
Admitted on Dec 2008
Lidar-ECC Sonde Comparison of averaged ozone profiles obtained from 5 quasi coincident ECC sondes (dotted line) and averaged lidar ozone profile (white line). The shadow area correspond to +/- 1 s of lidar measurements and horizontal line correspond to +/- 1 s of sondes. New differential absorption lidar for stratospheric ozone monitoring in Patagonia, South Argentina E A Wolfram et al 2008 J. Opt. A: Pure Appl. Opt. 10 104021 (7 pp) doi: 10. 1088/1464 -4258/10/10/104021
Intercomparison Campaign Río Gallegos March 2010 Argentina – Chile collaboration 3 sondes launched in Río Gallegos site, collocated with DIAL during first week of March
Intercomparison OZITOS Campaign Río Gallegos March 2011 Argentina – Chile collaboration 3 sondes launched during the night in Río Gallegos site, collocated with DIAL during 2 nd week of March 2011 OZone prof. Ile a. T RíO Gallego. S
Validación de Satélites GOMOS -Rio Gallegos Collocation criteria: Measurements within 800 km and < 24 h Global validation of ENVISAT ozone profiles using lidar measurements J. A. E. Van Gijsel. , D. P. J. Swart. , J. -L. Baray, H. Claude, T. Fehr, P. Von Der Gathen. , S. Godin. Beekmann. , G. H. Hansen. , T. Leblanc, I. S. Mcdermid, Y. M. Meijer, H. Nakane, E. J. Quel, W. Steinbrecht, K. B. Strawbridge, B. Tatarov. And E. A. Wolfram. Special Issue on the Montreal Protocol in the International Journal of Remote Sensing 30, (15 -16): 3987 -3994, 2009.
OMI NASA
Time Evolution of Total Ozone in Río Gallegos (2009) Study case 1 (October 3 and 4) Prolonged O 3 Reduction Extreme Event (November 2009)
Study Case 1 of Ozone Hole overpass in RG Site during 2009 OMI/AURA Oct 2 2009 Oct 4 2009 Oct 6 2009
Time Evolution of Total Ozone in Río Gallegos (2009) Prolonged O 3 Reduction Extreme Event (November 2009)
Study Case 2 Extreme Persist Ozone Hole over Río Gallegos 2009 daily evolution of total ozone column for Río Gallegos measured with Brewer 124 spectrophotometer (blue open circles) and SAOZ spectrometer (black open diamonts), and OMI satellite measurement (red line).
Total Ozone (DU) UV Increase Produced by Ozone Reduction
Measurement 34 Intensive Measurement Period 2006 Ozone Number Density [molec/cm 3] Altitude (km) Total Ozone (DU) August September October November December
Intensive Measurement Period 2006 August September October November December 34 Lidar Measurements ~4 hs average time each one 140 hrs. acquisition ~15 million laser shots Anomaly
Río Gallegos Site UV-B Radiometer GUV 541 UV-A Radiometer Pyranometer
UV Index at Río Gallegos Data Level 1. 5 Period: August 1, 2005 – October 31 2006
New Capability of Temperature Lidar Profile in RG Site Comparison Lidar with HIRDLS/AURA-NASA ΔS < 500 Km ΔT ± 12 Hs Mean ± 1σ dev HIRDLS N = 94 Measurements Temperature Profiles With Correction by Aerosols using Lidar Rayleigh Temperature Profiles Without Correction by Aerosols using Lidar Rayleigh Error bars are plus and minus 1σ dev 1 Km Resolution HIRDLS
Observatorio Atmosférico de la Patagonia Austral (Atmospheric Observatory of Southern Patagonia) Visit of Cristina Fernandez March 2011, Inauguration MM-Wave Radiometer Nagoya University
Recent Publication –Congress Communications Journals – Proccedings -Global validation of ENVISAT ozone profiles using lidar measurements J. A. E. Van Gijsel. , D. P. J. Swart. , J. -L. Baray, H. Claude, T. Fehr, P. Von Der Gathen. , S. Godin-Beekmann. , G. H. Hansen. , T. Leblanc, I. S. Mcdermid, Y. M. Meijer, H. Nakane, E. J. Quel, W. Steinbrecht, K. B. Strawbridge, B. Tatarov. And E. A. Wolfram. Special Issue on the Montreal Protocol in the nternational I Journal of Remote Sensing 30, (15 -16): 3987 -3994, 2009. -GOMOS ozone profile validation using ground-based and balloon sonde measurements J. A. E. van Gijsel, D. P. J. Swart, J. -L. Baray, H. Bencherif, H. Claude, T. Fehr, S. Godin-Beekmann, G. H. Hansen, P. Keckhut, T. Leblanc, I. S. Mc. Dermid, Y. J. Meijer, H. Nakane, E. J. Quel, K. Stebel, W. Steinbrecht, K. B. Strawbridge, B. I. Tatarov, and E. A. Wolfram Atmos. Chem. Phys. Discuss. , 10, 8515– 8551, 2010. www. atmos-chem-phys-discuss. net/10/8515/2010/ Published by Copernicus Publications on behalf of the European Geosciences Union. Received: 31 January 2010 – Accepted: 21 March 2010 – Published: 1 April 2010 -Extreme sunbathing: Three weeks of small total O 3 columns and high UV radiation over the southern tip of South America during the 2009 Antarctic O hole 3 season de Laat, A. T. J. , R. J. van der A, M. A. F. Allaart, M. van Weele, G. C. Benitez, C. Casiccia, N. M. Paes Leme, E. Quel, J. Salvador, and E. Wolfram (2010), Geophys. Res. Lett. , 37, L 14805, doi: 10. 1029/2010 GL 043699 -Climatology Of Stratospheric Ozone Profiles In Río Gallegos, Argentina Wolfram, Elian; Salvador, Jacobo; D´Elía, Raúl; Godin-Beekmann, Sophie; Quel, Eduardo. roceedings Of The 25 th International Laser Radar P Conference (Ilrc 2010), Vol. Ii, Pp. 995 -998. -Rayleigh lidar temperature profiles between 15 -60 km during SOLAR campaign in Río Gallegos (51º 55´s, 69º 14´w), Argentina: methodology and results Salvador, Jacobo; Wolfram, Elian; D´Elía, Raúl; Godin-Beekman, Sophie; Quel, Eduardo. Proceedings of the 25 th International Laser Radar Conference (ILRC 2010), Vol. II, pp. 999 -1002
Argentina-France Collaboration in Ozone Topics -Container (2002) -Electronic (2003) -Construction - Inversion Algorithm - SAOZ instrument (2008) -Data Interpretation -Use of MIMOSA and MIMOSA-CHIM Models -PICS project UVO 3 Clim- Patagonie (2009 -2011)
Summary üThe Atmospheric Observatory of Southern Patagonia is operative üIn December 2008, the Ozone DIAL joined to NDACC. Also in September 2009, SAOZ radiometer was admitted as NDACC instrument üDuring days with vortex proximity, strong reductions of vertical ozone number density were observed. Depletions of 40 - 50% were measured in vertical profiles associated to ozone hole üThe preliminary analysis of ozone profiles show that the biggest impact of polar vortex over vertical ozone distribution in Río Gallegos is in the middle stratosphere, between 23 -33 km
Outlook üStudy of stratospheric ozone depletion in the context of ozone recovery and climate change: • Statistical analysis of temporal evolution of vortex overpasses over Southern Argentina in relation with climate indices and impact on UV radiation • Evaluation of satellite observations using ozone vertical distribution measurements (lidar) and total ozone measurements (SAOZ, Brewer) • Evaluation of Chemistry Transport Model long term simulations (e. g. Reprobus and SLIMCAT models) and Chemistry Climate Model simulations (CCMVAL II results) with respect to observations and statistical analyses. • Collaboration with teams working on Antarctic surface climate? ?
Acknowledgements JICA (Japan International Cooperation Agency) Lidar Division Team NIES (Japan) LATMOS-IPSL/CNRS and French Team
ewolfram@citedef. gov. ar ewolfram@gmail. com www. division-lidar. com. ar www. uvo 3 patagonia. com. ar
CEILAP Lidar Division’s Capabilities Use of Laser as radiation source of remote sensing instruments Instrument Development Atmospheric Aerosols LIDAR Water Vapor Gases Measurement Monitoring of Atmospheric Phenomena and Pollution Stratospheric Ozone Monitoring of trace gases -Mean Latitudes Ozone Reduction -Ozone Hole Measurements • Urban Pollution • Biomass Burning • Volcanic Ash Passive Remote Sensing • SOLAR Campaign • UVO 3 Patagonia Project • UV-Vis Radiation Measurements • Aerosol Optical Thickness (AERONET) • Total Columns of O 3 y NO 2 (SAOZ)
Summary üThe stronger impact of ozone hole in surface UV radiation was observed during ozone hole dilution üAlso, overpass of poor ozone air masses over Rio Gallegos have high impact on UVI during summer üCloud cover modulate strongly the surface UV radiation, producing attenuation of 50% and increment of 20% in UVI (cloud border)