Скачать презентацию Отношение делимости и его свойства Определение Пусть а Скачать презентацию Отношение делимости и его свойства Определение Пусть а

Делимость.ppt

  • Количество слайдов: 58

Отношение делимости и его свойства Определение Пусть а и b N. Число а делится Отношение делимости и его свойства Определение Пусть а и b N. Число а делится на число b, если существует такое натуральное число q, что а = bq а b q N , что а = bq В этом случае число b называют делителем числа а, а число а – кратным числа b 24 8, т. к. 3 N , что 24 = 8 3

Различают понятия «b делитель числа а» и «b – делитель» В выражении « 25 Различают понятия «b делитель числа а» и «b – делитель» В выражении « 25 : 8» число 8 делитель (как компонент деления), а в выражении « 24 : 8» число 8 делитель числа 24 Теорема 1 1 является делителем любого натурального числа т. к. для а N а = 1· а Теорема 2 Если а b, то b а

Доказательство Так как а b, то q N, что а = bq а – Доказательство Так как а b, то q N, что а = bq а – b = bq – b = b · (q – 1). Поскольку а N, то q 1. Тогда b · (q – 1) 0, т. е. разность а – b 0 b а Из Теоремы 2 следует: Множество делителей данного числа а конечно – все делители меньше числа b Все делители числа 36 образуют конечное множество {1, 2, 3, 4, 6, 9, 12, 18, 36}

Свойства отношения делимости Теорема 3 ( а N) а а, т. е. отношение делимости Свойства отношения делимости Теорема 3 ( а N) а а, т. е. отношение делимости рефлексивно Доказательство ( а N) а = а · 1. Так как 1 N делимости, а а

Теорема 4 (а b и а b) b а, т. е. отношение делимости антисимметрично Теорема 4 (а b и а b) b а, т. е. отношение делимости антисимметрично Доказательство (от противного) Пусть неверно, что b а а b (по теореме 2) По условию а b и а b b а (по теореме 2) Неравенства а b и b а будут справедливы лишь тогда, когда а = b, что противоречит условию теоремы. Следовательно, наше предположение неверно

Теорема 5 а b и b с а с, т. е. отношение делимости транзитивно Теорема 5 а b и b с а с, т. е. отношение делимости транзитивно Доказательство Так как а b q N, что а = bq Так как b с р N, что b = ср а = bq = (ср)q = c(pq). Число pq N. Значит, по определению отношения делимости, а с

Теорема 6 (признак делимости суммы) Если каждое из натуральных чисел а 1, а 2, Теорема 6 (признак делимости суммы) Если каждое из натуральных чисел а 1, а 2, . . . , аn делится на натуральное число b, то и их сумма а 1 + а 2 +. . . + аn делится на это число Доказательство Так как а 1 b, то q 1 N, что а 1= b q 1 Так как а 2 b, то q 2 N, что а 2= b q 2 ……………………. Так как аn b, то qn N, что аn= b qn

а 1 + а 2 +. . . + аn = b (q 1 а 1 + а 2 +. . . + аn = b (q 1 + q 2 +. . . + qn) = bq q = q 1 + q 2 +. . . + qn , т. е. q N т. е. сумма а 1 + а 2 +. . . + аn есть произведение числа b и натурального числа q. Следовательно, сумма а 1 + а 2 +. . . + аn делится на b Пример Сумма (175 + 360 + 915) 5, т. к. 175 5 и 360 5 и 915 5

Теорема 7 (признак делимости разности) Если а 1 b, а 2 b и а Теорема 7 (признак делимости разности) Если а 1 b, а 2 b и а 1 > а 2, то (а 1 – а 2) b Доказательство аналогично доказательству теоремы 6

Теорема 8 (признак делимости произведения) Если а b, то ах b, где х N Теорема 8 (признак делимости произведения) Если а b, то ах b, где х N Доказательство Так как а b, то q N, что а = bq на х ах = (bq)x = b(qx), т. е. ах = b(qx), где qx N по определению отношения делимости ax b

Из теоремы 8 следует, что если один из множителей произведения делится на натуральное число Из теоремы 8 следует, что если один из множителей произведения делится на натуральное число b, то и все произведение делится на b Пример Произведение (24 · 976 · 305) 12, так как 24 12 Теорема 9 Если в сумме одно слагаемое не делится на число b, а все остальные слагаемые делятся на число b, то вся сумма на число b не делится

Пример Сумма (34 + 125 + 376 + 1024) 2, так как 34 2, Пример Сумма (34 + 125 + 376 + 1024) 2, так как 34 2, 376 2, 124 2, но 125 2 Теорема 10 Если в произведении ab множитель а делится на натуральное число m, а множитель b делится на натуральное число n, то ab делится на mn Доказательство основано на теореме 8

Теорема 11 Если ас bс и с N, то а b Доказательство Так как Теорема 11 Если ас bс и с N, то а b Доказательство Так как ас bс, то q N такое, что ас = (bc)q ас = (bq)c, следовательно, а = bq, т. е. a b

Признаки делимости Теорема 12 (признак делимости на 2) Для того чтобы число х делилось Признаки делимости Теорема 12 (признак делимости на 2) Для того чтобы число х делилось на 2, необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр 0, 2, 4, 6, 8 Доказательство 1) Пусть число х записано в десятичной системе счисления: х = аn · 10 n + аn-1 · 10 n – 1 +. . . + а 1 · 10 + а 0 , где аn, аn-1, . . . а 1 принимают значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, аn 0 и а 0 принимает значения 0, 2, 4, 6, 8

х = аn· 10 n+аn-1· 10 n -1+. . . + а 1· 10 х = аn· 10 n+аn-1· 10 n -1+. . . + а 1· 10 + а 0 = = (аn· 10 n-1 + аn-1· 10 n -2+. . . + а 1 ) · 10 + а 0 делится на 2, т. к. 10 2 а 0 тоже делится на 2, т. к. по условию заканчивается на 0, 2, 4, 6 или 8

2) Докажем, что, если число х 2, то а 0 приминимает значения 0, 2, 2) Докажем, что, если число х 2, то а 0 приминимает значения 0, 2, 4, 6 или 8 х = аn· 10 n + аn-1· 10 n -1 +. . . + а 1· 10 + а 0 = х – (аn· 10 n + аn-1· 10 n -1+. . . + а 1· 10) делится на 2, т. к. 10 2 Число х 2 по условию а 0 2

Теорема 13 (признак делимости на 5) Для того чтобы число х делилось на 5, Теорема 13 (признак делимости на 5) Для того чтобы число х делилось на 5, необходимо и достаточно, чтобы его десятичная запись оканчивалась цифрой 0 или 5 Доказательство аналогично признака делимости на 2 доказательству

Теорема 14 (признак делимости на 4) Для того чтобы число х делилось на 4, Теорема 14 (признак делимости на 4) Для того чтобы число х делилось на 4, необходимо и достаточно, чтобы на 4 делилось двузначное число, образованное последними двумя цифрами десятичной записи числа х Доказательство 1) х = аn· 10 n+аn-1· 10 n -1+. . . а 2 102 + а 1· 10 + а 0 = = (аn· 10 n-2 + аn-1· 10 n -3+. . . + а 2 ) · 102 + а 1 10 + а 0 делится на 4, т. к. 102 4 делится на 4 по условию

2) Докажем, что, если число х 4, то (а 1 10 + а 0) 2) Докажем, что, если число х 4, то (а 1 10 + а 0) образует двузначное число, которое делится на 4 х = аn· 10 n + аn-1· 10 n -1+. . . + а 2 10 2 + а 1· 10 + а 0 = х – (аn· 10 n + аn-1· 10 n -1+. . . + а 2 10 2) делится на 4, т. к. 102 4 Число х 4 по условию (а 1· 10 + а 0) 4

Пример 1) Число 1 5 7 8 7 2 4 72 4 2) Число Пример 1) Число 1 5 7 8 7 2 4 72 4 2) Число 9 8 7 6 4 1 4 41 4

Теорема 15 (признак делимости на 9) Для того чтобы число х делилось на 9, Теорема 15 (признак делимости на 9) Для того чтобы число х делилось на 9, необходимо и достаточно, чтобы сумма цифр его десятичной записи делилось на 9 Доказательство 1) Докажем, что (10 n – 1) 9

10 n – 1 = 10 10 n-1 – 1 = (9 + 1) 10 n – 1 = 10 10 n-1 – 1 = (9 + 1) 10 n-1 – 1 = = (9 · 10 n - 1 + 10 n - 1) – 1 = = (9 · 10 n - 1 + 9 · 10 n - 2 + 10 n - 2) – 1 = = (9 · 10 n-1 + 9 · 10 n-2 +. . . + 10) – 1 = = 9 · 10 n-1 + 9 · 10 n-2 + 10 n-2 +. . . + 9 = 9 · (10 n-1 + 10 n-2 + 10 n-2 +. . . + 1) делится на 9 (10 n – 1) 9

2) К десятичной записи числа х: х = аn · 10 n + аn-1 2) К десятичной записи числа х: х = аn · 10 n + аn-1 · 10 n – 1 +. . . + а 1 · 10 + а 0 прибавим и вычтем выражение (аn+ аn-1+. . . + а 0) Получим: х = (аn· 10 n – аn) + (аn-1 · 10 n-1– аn-1) +. . . + (а 1· 10 – а 1) + (а 0 – а 0) + (аn +аn-1 +. . . + а 1 + а 0) = делится на 9, т. к. каждое слагаемое содержит множитель (10 n – 1) = аn· (10 n – 1) + аn-1· (10 n-1 – 1)+. . . + а 1· (10 – 1) + + (аn + аn-1 +. . . + а 1 + а 0) делится на 9 по условию

3) Докажем, что, если число х 9, то (аn+ аn-1+. . . + а 3) Докажем, что, если число х 9, то (аn+ аn-1+. . . + а 0) 9 Равенство запишем в виде: х = (аn· 10 n – аn) + (аn-1 · 10 n-1– аn-1) +. . . + (а 1· 10 – а 1) + + (а 0 – а 0) + (аn +аn-1 +. . . + а 1 + а 0) аn +аn-1 +. . . + а 1 + а 0 = = х – (аn· (10 n – 1) + аn-1 ·(10 n-1 – 1) +. . . + а 1· (10 – 1)) В правой части этого равенства уменьшаемое и вычитаемое кратны 9, то по теореме о делимости разности (аn +аn-1 +. . . + а 1 + а 0) 9

Пример Число 34578 9, так как 3 + 4 + 5 + 7 + Пример Число 34578 9, так как 3 + 4 + 5 + 7 + 8 = 27, 27 9 Число 130542 не делится 9, так как 1 + 3 + 0 + 5 + 4 + 2 = 15, 15 не делится на 9

Теорема 16 (признак делимости на 3) Для того чтобы число х делилось на 3, Теорема 16 (признак делимости на 3) Для того чтобы число х делилось на 3, необходимо и достаточно, чтобы сумма цифр его десятичной записи делилось на 3 Доказательство аналогично доказательству признака делимости на 9

Наименьшее общее кратное и общий делитель наибольший Определение Общим кратным натуральных чисел а и Наименьшее общее кратное и общий делитель наибольший Определение Общим кратным натуральных чисел а и b называется число, которое кратно каждому из данных чисел Наименьшее число из всех общих кратных чисел а и b называется наименьшим общим кратным этих чисел Наименьшее общее кратное чисел а обозначают К(а, b) и b

Общими кратными чисел 12 и 18 являются: 36, 72, 108, 144, 180 … Число Общими кратными чисел 12 и 18 являются: 36, 72, 108, 144, 180 … Число 36 – наименьшее общее кратное чисел 12 и 18 Пишут: К(12, 18) = 36 Свойства К(а, b) 1. Наименьшее общее кратное чисел а и b всегда существует и является единственным 2. Наименьшее общее кратное чисел а и b не меньше большего из данных чисел, т. е. если а > b, то К(а, b) > а 3. Любое общее кратное чисел а и b делится на их наименьшее общее кратное

Определение Общим делителем натуральных чисел а и b называется число, которое является делителем каждого Определение Общим делителем натуральных чисел а и b называется число, которое является делителем каждого из данных чисел Наибольшее число из всех общих делителей чисел а и b называется наибольшим общим делителем данных чисел. Наибольший общий делитель чисел а и b обозначают D(a, b) Общими делителями чисел 12 и 18 являются числа: 1, 2, 3, 6 Число 6 – наибольший общий делитель чисел 12 и 18 Пишут: D(12, 18) = 6

Число 1 является общим делителем любых двух натуральных чисел а и b Определение D(a, Число 1 является общим делителем любых двух натуральных чисел а и b Определение D(a, b) = 1, то числа а и b называются взаимно простыми Пример Числа 14 и 15 – взаимно простые, так как D(14, 15) = 1

Свойства D (а, b) 1. Наибольший общий делитель чисел а и b всегда существует Свойства D (а, b) 1. Наибольший общий делитель чисел а и b всегда существует и является единственным 2. Наибольший общий делитель чисел а и b не превосходит меньшего из данных чисел, т. е. если а < b, то D(a, b) а 3. Наибольший общий делитель чисел а и b делится на любой общий делитель этих чисел

Произведение наименьшего общего кратного и наибольшего общего делителя чисел а и b равно произведению Произведение наименьшего общего кратного и наибольшего общего делителя чисел а и b равно произведению этих чисел, т. е. К(a, b) · D(a, b) = а · b Следствия 1) Наименьшее общее кратное двух взаимно простых чисел равно произведению этих чисел, т. е. D(a, b) = 1 K(a, b) = a · b Например, К(14, 15) = 14 15, так как D (14, 15) = 1

2) Признак делимости на составное число: Для того чтобы натуральное число а делилось на 2) Признак делимости на составное число: Для того чтобы натуральное число а делилось на произведение взаимно простых чисел m и n, необходимо и достаточно, чтобы оно делилось и на m, и на n Пример 6 = 2 · 3 и D(2, 3) = 1, то получаем признак делимости на 6: для того, чтобы натуральное число делилось на 6, необходимо и достаточно, чтобы оно делилось на 2 и на 3 Данный признак можно применять многократно

Задача Сформулируйте признак делимости на 60 Для того, чтобы число делилось на 60, необходимо Задача Сформулируйте признак делимости на 60 Для того, чтобы число делилось на 60, необходимо и достаточно, чтобы оно делилось и на 4, и на 15, где D(4, 15) = 1. В свою очередь, число будет делиться на 15 тогда и только тогда, когда оно делится и на 3, и на 5, где D(3, 5) = 1 Таким образом признак делимости на 60: Для того, чтобы число делилось на 60, необходимо и достаточно, чтобы оно делилось на 4, на 3 и на 5

3) Частные, получаемые при делении двух данных чисел на их наибольший общий делитель, являются 3) Частные, получаемые при делении двух данных чисел на их наибольший общий делитель, являются взаимно простыми числами Например, проверим, является ли число 12 наибольшим общим делителем чисел 24 и 36. Для этого разделим 24 и 36 на 12. Получим соответственно числа 2 и 3, где D (2, 3) = 1, т. е. 2 и 3 являются взаимно простыми. Следовательно, D(24, 36) = 12

Простые и составные числа Определение Простыми называются числа, которые делятся только на себя и Простые и составные числа Определение Простыми называются числа, которые делятся только на себя и на единицу Определение Составными называются числа, которые имеют более двух делителей Единица не относится ни к простым, ни к составным числам Числа 2, 5, 17, 61 и т. д. – простые, числа 4, 25, 102 и т. д. – составные

Свойства простых чисел 1. Если простое число p делится на некоторое натуральное число n, Свойства простых чисел 1. Если простое число p делится на некоторое натуральное число n, где n ≠ 1, то оно совпадает с n Действительно, если p ≠ n, то число р имеет три делителя: 1, n и p, а тогда оно не простое 2. Если p и q – простые числа и р ≠ q, то p не делится на q Если p – простое число, то оно имеет только два делителя: 1 и р. По условию q тоже простое, значит q ≠ 1 и q ≠ р Следовательно, q не является делителем числа p Числа 17 и 11 – простые, значит 17 не делится на 11

3. Если натуральное число a не делится на простое число p, то а и 3. Если натуральное число a не делится на простое число p, то а и p взаимно просты, т. е. D (а, р) = 1 Например, 25 не делится на 7, значит 25 и 7 – взаимно просты 4. Если произведение двух натуральных чисел а и b делится на простое число p, то хотя бы одно из них делится на p Например, 25 39 = 975. Число 975 делится на 3, т. к. 9 + 7 + 5 = 21. Но число 25 не делится на 3, следовательно, 39 делится на 3

5. Если натуральное число больше 1, то оно имеет хотя бы один простой делитель 5. Если натуральное число больше 1, то оно имеет хотя бы один простой делитель Действительно, все простые числа имеют простые делители – сами эти числа, составные числа можно раскладывать на множители до тех пор, пока они не станут простыми числами Например, 240 > 1, значит имеет хотя бы один простой делитель, это число 2 (или 5)

6. Наименьший простой делитель составного числа а не превосходит Доказательство Пусть а – составное 6. Наименьший простой делитель составного числа а не превосходит Доказательство Пусть а – составное число, а р – его наименьший простой делитель. Тогда а = рb. При этом р b, т. к. иначе простой делитель числа b был бы меньше, чем р, а тогда а имело бы простые делители, меньшие чем р. Умножим обе части неравенства на р. Получим, р2 рb рb = а. Поэтому, р2 а, т. е. р

Теорема – Основная теорема арифметики Любое составное число можно единственным образом представить в виде Теорема – Основная теорема арифметики Любое составное число можно единственным образом представить в виде произведения простых множителей где а 1, а 2, а 3, …, аk – простые числа, n 1, n 2, n 3, … , nk – показатели, с которыми входят простые числа в разложение числа х Такое разложение числа на простые множители называют каноническим

Пример 110 = 2 · 5 · 11 – произведение простых множителей есть разложение Пример 110 = 2 · 5 · 11 – произведение простых множителей есть разложение числа 110 на простые множители Два разложения числа на простые множители считают одинаковыми, если они отличаются друг от друга лишь порядком множителей 110 = 2 · 5 · 11 = 5 · 11 · 2 - одно и то же разложение

Способ разложения числа на простые множители 90 2 45 3 15 3 5 5 Способ разложения числа на простые множители 90 2 45 3 15 3 5 5 только простые числа 1 Таким образом, 90 = 2 · 3 · 5 · 1 = 2 · 32 · 5 60 = 22 · 3· 5; 72 = 23 · 32

Решето Эратосфена Эратосфеном (III в. до н. э. ) был придуман способ получения простых Решето Эратосфена Эратосфеном (III в. до н. э. ) был придуман способ получения простых чисел, не превышающих натурального числа а (решето Эратосфена) Найдем все простые числа до 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Бесконечность множества простых чисел Теорема, доказанная Евклидом Множество простых чисел бесконечно Доказательство Пусть множество Бесконечность множества простых чисел Теорема, доказанная Евклидом Множество простых чисел бесконечно Доказательство Пусть множество простых чисел конечно и состоит из чисел: 2, 3, 5, 7, . . . , p, где р – наибольшее простое число. Найдем произведение всех простых чисел 2 3 5 7 . . . p = а. Прибавим к а единицу. Число а + 1 простым не является, т. к. а + 1 > р наибольшего простого числа (по предположению)

Пусть а + 1 – составное число (а + 1) должно иметь хотя бы Пусть а + 1 – составное число (а + 1) должно иметь хотя бы один простой делитель q р. Так как число а = 2 · 3 · 5 · р также делится на это простое число q, то и разность (а + 1) – а делится на q, т. е. число 1, делится на q, что невозможно Итак, число а не является ни простым, ни составным. Но этого тоже не может быть – всякое число, отличное от 1, либо простое, либо составное. Следовательно, предложение о том, что множество простых чисел конечное и есть самое большое простое число, неверно, и значит, множество простых чисел бесконечное

Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел 1 способ Чтобы найти Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел 1 способ Чтобы найти НОД двух чисел, можно перечислить все их общие делители и выбрать из них наибольший Пример Даны числа 120 и 486 Делители числа 120: 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120 Делители числа 486: 1, 2, 3, 6, 9, 27, 54, 81, 162, 243, 486 Общие делители: 1, 2, 3, 6 Наибольшим общим делителем является число 6

Чтобы найти НОК двух чисел, можно перечислить некоторые их общие кратные и выбрать из Чтобы найти НОК двух чисел, можно перечислить некоторые их общие кратные и выбрать из них наименьший Пример Даны числа 60 и 48 Кратные числа 60: 60, 120, 180, 240, 300, 360, 420, 480, 540, . . . Кратные числа 48: 48, 96, 144, 192, 240, 288, 336, 384, 432, 480, . . . Общие кратные чисел 60 и 48: 240, 480, . . . Наименьшим общим кратным является число 240

2 способ – основан на разложении данных чисел на простые множители Алгоритм нахождения наибольшего 2 способ – основан на разложении данных чисел на простые множители Алгоритм нахождения наибольшего общего делителя данных чисел: 1) представить каждое данное число в каноническом виде; 2) образовать произведение общих для всех данных чисел простых множителей, каждый с наименьшим показателем, с каким он входит во все разложения данных чисел; 3) найти значение этого произведения – оно и будет наибольшим общим делителем данных чисел

Пример Даны два числа 3600 и 288 Каноническое разложение этих чисел: 3600 = 24 Пример Даны два числа 3600 и 288 Каноническое разложение этих чисел: 3600 = 24 32 52; D(3600, 288) = 24 32 = 144 288 = 25 32

Алгоритм нахождения наименьшего общего кратного данных чисел: 1) представить каждое данное число в каноническом Алгоритм нахождения наименьшего общего кратного данных чисел: 1) представить каждое данное число в каноническом виде; 2) образовать произведение всех простых множителей, находящихся в разложениях данных чисел, каждый с наибольшим показателем, с каким он входит во все разложения данных чисел; 3) найти значение этого произведения – оно и будет наименьшим общим кратным данных чисел

Пример Даны два числа 3600 и 288 Каноническое разложение этих чисел: 3600 = 24 Пример Даны два числа 3600 и 288 Каноническое разложение этих чисел: 3600 = 24 32 52; 288 = 25 32 K(3600, 288) = 25 32 52 = 7200

3 способ – алгоритм Евклида Алгоритм Евклида основан на следующих утверждениях: 1. Если а 3 способ – алгоритм Евклида Алгоритм Евклида основан на следующих утверждениях: 1. Если а делится на b, то D(a, b) = b 2. Если a = bq + r и r < b, то множество общих делителей чисел а и b совпадает с множеством общих делителей чисел b и r 3. Если а = bq + r и r < b, то D(a, b) = D(b, r)

Пусть а > b Если а делится на b, то D(a, b) = b Пусть а > b Если а делится на b, то D(a, b) = b Если при делении а на b, получается остаток r, то а = bq + r и D(a, b) = D(b, r) Найдем D(b, r) Если b делится на r, то D(b, r) = r и тогда D(a, b) = r Если при делении b на r получается остаток r 1, то b = rq 1 + r 1, и тогда D(r, r 1) = D(b, r) = D(a, b) Найдем D(r, r 1)

Продолжая описанный процесс, получаем все меньшие и меньшие остатки. В результате получим остаток, на Продолжая описанный процесс, получаем все меньшие и меньшие остатки. В результате получим остаток, на который будет делиться предыдущий остаток. Этот наименьший, отличный от нуля, остаток и будет наибольшим общим делителем чисел а и b Найти НОК и НОД чисел можно по формуле: К(a, b) · D(a, b) = а · b К(а, b) = а · b : D(a, b) = а · b : К(а, b)

Пример Найдите по алгоритму Евклида наибольший общий делитель чисел 2585 и 7975 = 2585 Пример Найдите по алгоритму Евклида наибольший общий делитель чисел 2585 и 7975 = 2585 3 + 220 2585 = 220 11 + 165 220 = 165 1 + 55 165 = 55 3 + 0 Значит, D(7975, 2585) = 55, К(7975, 2585) = = (7975 2585) : 55 = = 20615375 : 55 = 374825

7975 7555 2585 220 385 220 165 165 0 55 3 165 1 220 7975 7555 2585 220 385 220 165 165 0 55 3 165 1 220 11 2585 3