Скачать презентацию ОПОРЫ КАЧЕНИЯ Опоры валов и осей в которых Скачать презентацию ОПОРЫ КАЧЕНИЯ Опоры валов и осей в которых

Подшипники.ppt

  • Количество слайдов: 66

ОПОРЫ КАЧЕНИЯ Опоры валов и осей, в которых трение скольжения заменено трением качения, называются ОПОРЫ КАЧЕНИЯ Опоры валов и осей, в которых трение скольжения заменено трением качения, называются подшипниками качения Устройство подшипников качения Установка подшипника в корпусе 1, 2 – наружные и внутренние кольца; 3 – тела качения; 4 – сепаратор Выпускаются подшипники от d = 0, 6 мм; D = 2 мм; В = 0, 8 мм; m = 0, 015 г до d = 12 м; D = 14 м; В = 0, 45 м; m = 130 г.

ДОСТОИНСТВА ПОДШИПНИКОВ КАЧЕНИЯ Ø наиболее стандартизованы в международном масштабе; Ø централизовано изготавливаются в массовом ДОСТОИНСТВА ПОДШИПНИКОВ КАЧЕНИЯ Ø наиболее стандартизованы в международном масштабе; Ø централизовано изготавливаются в массовом производстве; Ø по сравнению с подшипниками скольжения имеют меньшие моменты трения при пуске; Ø меньшие габариты по ширине; Ø малый расход смазочных материалов и простота обслуживания; Ø отсутствие необходимости в цветных металлах; Ø меньшие требования термообработке к материалам и

НЕДОСТАТКИ ПОДШИПНИКОВ КАЧЕНИЯ Ø большие радиальные габариты; Ø значительные контактные напряжения, ограничивающие ресурс; Ø НЕДОСТАТКИ ПОДШИПНИКОВ КАЧЕНИЯ Ø большие радиальные габариты; Ø значительные контактные напряжения, ограничивающие ресурс; Ø меньшая демпфирующая способность; Ø ограниченная быстроходность; Ø повышенный шум из-за циклического перекатывания тел качения через нагруженную зону; Ø высокая производстве; стоимость при мелкосерийном Ø неразъемность в радиальном направлении

МАТЕРИАЛЫ ДЕТАЛЕЙ ПОДШИПНИКОВ Детали подшипников работают в условиях высоких контактных напряжений. Они должны иметь МАТЕРИАЛЫ ДЕТАЛЕЙ ПОДШИПНИКОВ Детали подшипников работают в условиях высоких контактных напряжений. Они должны иметь повышенную прочность, структурную однородность и твердость. Кольца и тела качения изготавливают из подшипниковых сталей марок ШХ 15, ШХ 15 -Ш, ШХ 15 -В, ШХ 15 СГ-Ш и т. д. Твердость - колец и роликов составляет 58… 66 HRCЭ - шариков 63… 67 HRCЭ. Сепараторы изготавливают из мягкой углеродистой стали. Массивные сепараторы из бронзы, латуни, алюминиевых сплавов, металлокерамики, текстолита, полиамидов и др. пластмассы.

КЛАССИФИКАЦИЯ ПОДШИПНИКОВ КАЧЕНИЯ По форме тел качения По направлению воспринима-емой нагрузки По числу рядов КЛАССИФИКАЦИЯ ПОДШИПНИКОВ КАЧЕНИЯ По форме тел качения По направлению воспринима-емой нагрузки По числу рядов тел качения По способу самоустановки По соотношению габаритных размеров По классу точности По уровню вибрации По специальным требованиям

КЛАССИФИКАЦИЯ ПОДШИПНИКОВ ПО ТЕЛАМ КАЧЕНИЯ КЛАССИФИКАЦИЯ ПОДШИПНИКОВ ПО ТЕЛАМ КАЧЕНИЯ

КЛАССИФИКАЦИЯ ПОДШИПНИКОВ ПО ЧИСЛУ РЯДОВ ТЕЛ КАЧЕНИЯ ü различают подшипники одно –, двух – КЛАССИФИКАЦИЯ ПОДШИПНИКОВ ПО ЧИСЛУ РЯДОВ ТЕЛ КАЧЕНИЯ ü различают подшипники одно –, двух – и многорядные ПО СПОСОБУ САМОУСТАНОВКИ ü самоустанавливающиеся (сферические), допускающие перекос колец до 40 ü несамоустанавливающиеся (допустимый взаимный перекос колец от 1 до 8 мин. )

КЛАССИФИКАЦИЯ ПОДШИПНИКОВ КАЧЕНИЯ ПО СООТНОШЕНИЮ ГАБАРИТНЫХ РАЗМЕРОВ (наружного диаметра D, внутреннего диаметра d и КЛАССИФИКАЦИЯ ПОДШИПНИКОВ КАЧЕНИЯ ПО СООТНОШЕНИЮ ГАБАРИТНЫХ РАЗМЕРОВ (наружного диаметра D, внутреннего диаметра d и ширины В) Различают серии: сверх легкую, особо легкую, легкую широкую, среднюю широкую и тяжелую В порядке возрастания наружного диаметра установлены серии диаметров, обозначаемые цифрами 0, 8, 9, 1, 7, 2, 3, 4 и 5. Аналогично серии ширин (высот для упорных подшипников) имеют обозначения 7, 8, 9, 0, 1, 2, 3, 4 и 5. Подшипники различных серий отличаются друг от друга в основном предельной частотой вращения и нагрузочной способностью.

КЛАССИФИКАЦИЯ ПОДШИПНИКОВ КАЧЕНИЯ ПО КЛАССУ ТОЧНОСТИ Стандартом установлены следующие классы точности подшипников ( в КЛАССИФИКАЦИЯ ПОДШИПНИКОВ КАЧЕНИЯ ПО КЛАССУ ТОЧНОСТИ Стандартом установлены следующие классы точности подшипников ( в порядке повышения): 8, 7, 0, 6 Х, 6, 5, 4, 2, Т. Класс точности определяет точность размеров и формы деталей подшипников. В зависимости от класса точности и дополнительных требований различают три категории подшипников: А, В, С. Наибольшее распространение имеют подшипники нормального класса точности 0. С повышением класса точности существенно возрастает стоимость изготовления подшипника. Например: класс точности 2 примерно в 10 раз дороже подшипника класса точности 0.

КЛАССИФИКАЦИЯ ПОДШИПНИКОВ КАЧЕНИЯ ПО УРОВНЮ ВИБРАЦИЙ ü различают подшипники с нормальным пониженным низким уровнем КЛАССИФИКАЦИЯ ПОДШИПНИКОВ КАЧЕНИЯ ПО УРОВНЮ ВИБРАЦИЙ ü различают подшипники с нормальным пониженным низким уровнем вибрации ПО СПЕЦИАЛЬНЫМ ТРЕБОВАНИЯМ ü выпускают подшипники теплостойкие малошумные коррозионностойкие немагнитные самосмазывающиеся и т. д.

ПРИМЕНЯЕМОСТЬ ПОДШИПНИКОВ КАЧЕНИЯ Шариковые 38, 6% Роликовые конические 24, 7% Роликовые цилиндрические 8, 9% ПРИМЕНЯЕМОСТЬ ПОДШИПНИКОВ КАЧЕНИЯ Шариковые 38, 6% Роликовые конические 24, 7% Роликовые цилиндрические 8, 9% Роликовые сферические 5, 7% Игольчатые 5, 7% Остальные (приборные, прецизионные и т. д. ) 16, 4% ВСЕГО 100%

ПОВРЕЖДЕНИЯ ПОДШИПНИКОВ КАЧЕНИЯ 1. Усталостное выкрашивание рабочих поверхностей (на дорожках качения наиболее напряженных колец ПОВРЕЖДЕНИЯ ПОДШИПНИКОВ КАЧЕНИЯ 1. Усталостное выкрашивание рабочих поверхностей (на дорожках качения наиболее напряженных колец из-за действия знакопеременных напряжений появляются микротрещины, которые расклиниваются проникающей в них смазкой, что ведет к выкрашиванию). 2. Разрушение тел качения. 3. Износ колец и тел качения. 4. Образование вмятин на рабочих поверхностях (бринеллирование) при динамических нагрузках, статических нагрузках, без вращения. Опасность образования вмятин существенна в транспортных машинах, в которых возможны большие динамические нагрузки и существенные нагрузки без вращения. 5. Разрушение сепараторов.

ПРИМЕРЫ ПОВРЕЖДЕНИЯ КОЛЕЦ ПОДШИПНИКОВ а, б – раскалывание наружного кольца соответственно шарикового и роликового ПРИМЕРЫ ПОВРЕЖДЕНИЯ КОЛЕЦ ПОДШИПНИКОВ а, б – раскалывание наружного кольца соответственно шарикового и роликового подшипников; в – выкрашивание рабочей поверхности внутреннего кольца

РАСПРЕДЕЛЕНИЕ ВЫБРАКОВАННЫХ ПОДШИПНИКОВ КАЧЕНИЯ ТРАКТОРОВ ПО ВИДАМ ПОВРЕЖДЕНИЙ Виды повреждений (выбраковочный признак) Частота возникновения РАСПРЕДЕЛЕНИЕ ВЫБРАКОВАННЫХ ПОДШИПНИКОВ КАЧЕНИЯ ТРАКТОРОВ ПО ВИДАМ ПОВРЕЖДЕНИЙ Виды повреждений (выбраковочный признак) Частота возникновения выбраковочного признака, % Увеличение зазоров сверх предельных значений нарушения плотности посадки 65… 76 Нарушение плотности посадки 17… 21 Микроскопические повреждения рабочих поверхностей дорожек и тел качения 4… 11 Поломка деталей подшипников 5… 9

КРИТЕРИИ РАСЧЕТА ПОДШИПНИКОВ КАЧЕНИЯ Основными причинами выхода из строя подшипников качения являются: пластические деформации КРИТЕРИИ РАСЧЕТА ПОДШИПНИКОВ КАЧЕНИЯ Основными причинами выхода из строя подшипников качения являются: пластические деформации при статическом нагружении и усталостное выкрашивание под действием переменных нагрузок. В зависимости от условий работы расчет (подбор) подшипников на заданный ресурс ведут по статической грузоподъемности (критерий максимальных контактных напряжений) и по динамической грузоподъемности (критерий усталостного выкрашивания). Расчеты по критерию износостойкости не нашли широкого применения из-за сложности недостаточности необходимых данных. и

РАСЧЕТ (ПОДБОР) ПОДШИПНИКОВ КАЧЕНИЯ ПО СТАТИЧЕСКОЙ ГРУЗОПОДЪЕМНОСТИ (при n ≤ 1 об/мин) P 0 РАСЧЕТ (ПОДБОР) ПОДШИПНИКОВ КАЧЕНИЯ ПО СТАТИЧЕСКОЙ ГРУЗОПОДЪЕМНОСТИ (при n ≤ 1 об/мин) P 0 ≤ C 0, где C 0 – статическая грузоподъемность; P 0 – эквивалентная статическая нагрузка Статической грузоподъемностью подшипников называют такую радиальную (осевую) нагрузку, которая вызывает общую остаточную деформацию тел качения и дорожки качения равную 0, 0001 диаметра тела качения. Эквивалентная статическая нагрузка: P 0 = X 0 Fr + Y 0 Fa, но не меньше, чем P 0 = Fr где X 0 , Y 0 - коэффициенты радиальной Fr и осевой Fa статических нагрузок

ПОДБОР ПОДШИПНИКОВ КАЧЕНИЯ ПО ДИНАМИЧЕСКОЙ ГРУЗОПОДЪЕМНОСТИ НА НЕОБХОДИМЫЙ РЕСУРС Динамической грузоподъемностью С называют такую ПОДБОР ПОДШИПНИКОВ КАЧЕНИЯ ПО ДИНАМИЧЕСКОЙ ГРУЗОПОДЪЕМНОСТИ НА НЕОБХОДИМЫЙ РЕСУРС Динамической грузоподъемностью С называют такую радиальную (осевую) нагрузку, которую с 90% вероятностью может выдержать подшипник без повреждений в течение одного миллиона оборотов внутреннего кольца. Ресурс подшипника качения – число оборотов, которые сделает одно из колец относительно другого до появления признаков усталости материала колец или тел качения. Ресурс подшипников выражают в миллионах оборотов L или в часах Lh = 106 L / (60 n), где n – частота вращения подшипника, мин-1 Уравнение кривой усталости Fr L 1/p = C или L = (C / Fr )p p = 3 - для шариковых подшипников p = 3, 33 - для роликовых подшипников Lh

ОПРЕДЕЛЕНИЕ БАЗОВОГО РАСЧЕТНОГО РЕСУРСА Базовый расчетный ресурс L 10 в миллионах оборотов, соответствующий 90% ОПРЕДЕЛЕНИЕ БАЗОВОГО РАСЧЕТНОГО РЕСУРСА Базовый расчетный ресурс L 10 в миллионах оборотов, соответствующий 90% надежности, определяют для подшипников, выполненных из обычных материалов по обычной технологии и работающих в обычных условиях, по формуле: L 10 = (C / Р )p где Р – эквивалентная динамическая нагрузка, учитывающая условия нагружения и конструкцию подшипника Для радиальных и радиально-упорных подшипников Для упорно радиальных где Fr и Fa – соответственно радиальная и осевая нагрузки; X и Y – коэффициенты радиальной и осевой динамической нагрузки; V – коэффициент вращения кольца, V = 1 при вращении внутреннего кольца, V = 1, 2 при вращении наружного кольца. Для сферических подшипников всегда V = 1. КТ - температурный коэффициент, КБ - коэффициент динамичности нагрузки.

ОПРЕДЕЛЕНИЕ РЕСУРСА ПОДШИПНИКА ДЛЯ КОНКРЕТНЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ Lna = a 1 a 23 (C ОПРЕДЕЛЕНИЕ РЕСУРСА ПОДШИПНИКА ДЛЯ КОНКРЕТНЫХ УСЛОВИЙ ЭКСПЛУАТАЦИИ Lna = a 1 a 23 (C / P)p где a 1 - коэффициент надежности; a 23 = a 2 a 3 ; a 2 – коэффициент учитывающий свойства материала; a 3 – коэффициент учитывающий смазку и условия работы подшипника. Долговечность Lna L 10 a La L 4 a L 3 a L 2 a L 1 a Надежность, % 90 95 96 97 98 99 Коэффициент долговечности а 1 1 0, 62 0, 53 0, 44 0, 33 0, 21 Значения коэффициента a 23 Условия использования Тип подшипника I II III Шарикоподшипники, кроме сферических 0, 7… 0, 8 1, 0 1, 2 Роликоподшипники цилиндрические и шарикоподшипники сферические 0, 5… 0, 6 0. 8 1… 1, 2 Роликоподшипники конические 0, 6… 0, 7 0, 9 1, 1… 1, 3 Роликоподшипники радиальные сферические двухрядные 0, 3… 0, 4 0, 6 0. 8

УСЛОВИЯ ИСПОЛЬЗОВАНИЯ ПОДШИПНИКОВ I – обычные условия применения подшипников; II – характеризующиеся наличием гидродинамической УСЛОВИЯ ИСПОЛЬЗОВАНИЯ ПОДШИПНИКОВ I – обычные условия применения подшипников; II – характеризующиеся наличием гидродинамической пленки масла между контактирующими поверхностями и отсутствием перекосов в узле; III – кольца и тела качения изготовлены из сталей электрошлаковой или вакуумной переплавки, остальные условия соответствуют II.

СХЕМА РАСПРЕДЕЛЕНИЯ СИЛ МЕЖДУ ТЕЛАМИ КАЧЕНИЯ СХЕМА РАСПРЕДЕЛЕНИЯ СИЛ МЕЖДУ ТЕЛАМИ КАЧЕНИЯ

РАСПРЕДЕЛЕНИЕ НАГРУЗКИ ПО ТЕЛАМ КАЧЕНИЯ б а в а – на подшипник с нулевым РАСПРЕДЕЛЕНИЕ НАГРУЗКИ ПО ТЕЛАМ КАЧЕНИЯ б а в а – на подшипник с нулевым радиальным зазором; б – с нормальным радиальным зазором; в – на подшипник с таким же зазором, но при действии как радиальной, так и осевой силы. При осевом нагружении (в) радиальный зазор в подшипнике уменьшается и происходит некоторое выравнивание сил по телам качения, создаваемых нагрузкой Fr. Определенное осевое нагружение подшипника оказывает положительное влияние на его ресурс. Для учета этого влияния вводят коэффициент осевого нагружения е – предельное отношение При е, Х = 1, Y = 0. При > е, Х 1, Y > 0.

ОСОБЕННОСТИ РАСЧЕТА РАДИАЛЬНО-УПОРНЫХ ПОДШИПНИКОВ В расчетах учитывают осевые силы, возникающие от радиальной нагрузки Fr ОСОБЕННОСТИ РАСЧЕТА РАДИАЛЬНО-УПОРНЫХ ПОДШИПНИКОВ В расчетах учитывают осевые силы, возникающие от радиальной нагрузки Fr вследствие наклона контактных площадок к оси вращения подшипника где е’ – коэффициент минимальной осевой нагрузки

ОПРЕДЕЛЕНИЕ РЕЗУЛЬТИРУЮЩИХ ОСЕВЫХ СИЛ НА ОПОРЫ Схема нагружения Соотношение сил Результирующие осевые силы Результирующая ОПРЕДЕЛЕНИЕ РЕЗУЛЬТИРУЮЩИХ ОСЕВЫХ СИЛ НА ОПОРЫ Схема нагружения Соотношение сил Результирующие осевые силы Результирующая осевая нагрузка на фиксирующую опору равна сумме внешних осевых сил. Результирующая осевая нагрузка на другую опору равна собственной составляющей

КОНСТРУКЦИИ ВАЛА С ДВУМЯ РАДИАЛЬНО-УПОРНЫМИ ПОДШИПНИКАМИ В ФИКСИРУЮЩЕЙ ОПОРЕ а б а и б КОНСТРУКЦИИ ВАЛА С ДВУМЯ РАДИАЛЬНО-УПОРНЫМИ ПОДШИПНИКАМИ В ФИКСИРУЮЩЕЙ ОПОРЕ а б а и б – вал червяка с фиксирующей опорой на радиально-упорных шариковых подшипниках и на радиально-упорных роликовых подшипниках соответственно.

КОНСТРУКЦИИ ВАЛА С ДВУМЯ ПЛАВАЮЩИМИ ОПОРАМИ а б а – вал, установленный на шариковых КОНСТРУКЦИИ ВАЛА С ДВУМЯ ПЛАВАЮЩИМИ ОПОРАМИ а б а – вал, установленный на шариковых радиальных сферических подшипника; б – вал, установленный на роликовых радиальных подшипниках.

Смазка подшипников Жидкими маслами: - окунанием; - разбрызгиванием (v>3 м/с); - масляным туманом (v>7 Смазка подшипников Жидкими маслами: - окунанием; - разбрызгиванием (v>3 м/с); - масляным туманом (v>7 м/с); - капельная; - циркуляционная. Пластичные смазки. Твердые смазки

ПОСЛЕДОВАТЕЛЬНОСТЬ ПОДБОРА ПОДШИПНИКОВ КАЧЕНИЯ 1. Назначают подшипника тип и схему установки 2. Назначают класс ПОСЛЕДОВАТЕЛЬНОСТЬ ПОДБОРА ПОДШИПНИКОВ КАЧЕНИЯ 1. Назначают подшипника тип и схему установки 2. Назначают класс точности подшипника 3. Подбирают типоразмер подшипника из ряда стандартных, исходя из диаметра вала 4. Уточняют типоразмер подшипника с учетом необходимого ресурса.

ОПОРЫ СКОЛЬЖЕНИЯ Подшипник скольжения – это опора, в которой опорная поверхность вала (цапфа) скользит ОПОРЫ СКОЛЬЖЕНИЯ Подшипник скольжения – это опора, в которой опорная поверхность вала (цапфа) скользит по поверхности вкладыша (подшипника) Радиально-упорный подшипник скольжения Fa Радиальный подшипник скольжения Упорный подшипник скольжения

ДОСТОИНСТВА И НЕДОСТАТКИ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ ДОСТОИНСТВА работоспособность при очень больших скоростях ü небольшие габариты ДОСТОИНСТВА И НЕДОСТАТКИ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ ДОСТОИНСТВА работоспособность при очень больших скоростях ü небольшие габариты в радиальном направлении ü сохранение работоспособности в особых условиях (в агрессивных средах, воде, при загрязненной смазке, при отсутствии смазки) ü бесшумность ü хорошо демпфируют колебания ü легче и проще в изготовлении ü способны работать практически без износа в режиме жидкостной и газовой смазке НЕДОСТАТКИ ü большие потери на трение для подшипников, работающих в условиях граничного и полужидкостного трения ü значительные габариты в осевом направлении ü сравнительная сложность конструкции и высокие требования к смазке для подшипников, работающих в условиях жидкостного трения ü не обеспечена взаимозаменяемость, отсутствует стандартизация ü необходимость применения цветных металлов

Примеры использования (сепараторы, центрифуги, газовые турбины, шлифовальные станки, водяные насосы, гребные винты судов, двигатели Примеры использования (сепараторы, центрифуги, газовые турбины, шлифовальные станки, водяные насосы, гребные винты судов, двигатели внутреннего сгорания и т. д. ).

ТРЕБОВАНИЯ К ПОДШИПНИКОВЫМ МАТЕРИАЛАМ И ЦАПФАМ МАТЕРИАЛЫ ПОДШИПНИКОВ ДОЛЖНЫ ИМЕТЬ: Ø малый коэффициент трения ТРЕБОВАНИЯ К ПОДШИПНИКОВЫМ МАТЕРИАЛАМ И ЦАПФАМ МАТЕРИАЛЫ ПОДШИПНИКОВ ДОЛЖНЫ ИМЕТЬ: Ø малый коэффициент трения Ø высокую износостойкость и сопротивление усталости Ø хорошую теплопроводность Ø прирабатываемость Ø смачиваемость маслом Ø коррозионную стойкость Ø обрабатываемость Ø низкий коэффициент линейного расширения Ø низкую стоимость Применяется большое количество различных антифрикционных материалов ЦАПФЫ (как правило стальные) Ø должны иметь высокую твердость и шлифованную или полированную поверхность.

ПОДШИПНИКОВЫНЕ АНТИФРИКЦИОННЫЕ МАТЕРИАЛЫ СТАЛЬНЫЕ • баббиты • бронзы • сплавы на цинковой основе • ПОДШИПНИКОВЫНЕ АНТИФРИКЦИОННЫЕ МАТЕРИАЛЫ СТАЛЬНЫЕ • баббиты • бронзы • сплавы на цинковой основе • сплавы на алюминиевой основе • антифрикционные чугуны МЕТАЛЛО- НЕМЕТАЛ-ЛИЧЕСКИЕ КЕРАМИЧЕСКИЕ • бронзографитовые • железографитовые • • пластмассы древесные пластики резина графитовые материалы

ПРИМЕРЫ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ Подшипник листового прокатного стана с вкладышем из древесины: 1 – корпус ПРИМЕРЫ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ Подшипник листового прокатного стана с вкладышем из древесины: 1 – корпус подшипника; 2 – вкладыш из прессованной древесины; 3 – боковые пластины Подшипник из полиамида: 1 – металлическая втулка; 2 – трубка из полиамида; 3 – зазор; 4 – упругие кольца Резиновый вкладыш из материала на основе термореактивной армированной резины холодной вулканизации, насыщенной графитом или дусильфидом молибдена.

СХЕМЫ КОНСТРУКЦИЙ ВИБРОУСТОЙЧИВЫХ ПОДШИПНИКОВ а – лимонная форма расточки вкладышей; б – сборка со СХЕМЫ КОНСТРУКЦИЙ ВИБРОУСТОЙЧИВЫХ ПОДШИПНИКОВ а – лимонная форма расточки вкладышей; б – сборка со взаимным смещением вкладышей.

РЕЖИМЫ РАБОТЫ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ Важнейшие эксплуатационные характеристики опор скольжения – несущая способность и потери РЕЖИМЫ РАБОТЫ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ Важнейшие эксплуатационные характеристики опор скольжения – несущая способность и потери на трение. 1 – область граничного трения. Соответствует высоким нагрузкам, малым скоростям скольжения, f = 0, 1… 0, 2; 2 – область полужидкостного трения, трущиеся поверхности частично касаются друга; 3 – область жидкостного трения, трущиеся поверхности не касаются друга.

УСЛОВИЯ ОБРАЗОВАНИЯ РЕЖИМА ЖИДКОСТНОГО ТРЕНИЯ Наличие клина Наличие смазывающей жидкости Обеспечение необходимой скорости УСЛОВИЯ ОБРАЗОВАНИЯ РЕЖИМА ЖИДКОСТНОГО ТРЕНИЯ Наличие клина Наличие смазывающей жидкости Обеспечение необходимой скорости

СХЕМА ГИДРОСТАТИЧЕСКОГО ПОДШИПНИКА 1 – дроссели (дозирующее отверстие); 2 – карманы во вкладышах. Дроссель СХЕМА ГИДРОСТАТИЧЕСКОГО ПОДШИПНИКА 1 – дроссели (дозирующее отверстие); 2 – карманы во вкладышах. Дроссель примерно вдвое снижает давление масла, поступающего в карман, чем обеспечивается устойчивость цапфы в подшипнике

ГИДРОСТАТИЧЕСКИЙ ПОДШИПНИК ГИДРОСТАТИЧЕСКИЙ ПОДШИПНИК

ВИДЫ ПОВРЕЖДЕНИЙ И КРИТЕРИИ РАБОТОСПОСОБНОСТИ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ ПОВРЕЖДЕНИЯ: Ø износ рабочих поверхностей (основная причина ВИДЫ ПОВРЕЖДЕНИЙ И КРИТЕРИИ РАБОТОСПОСОБНОСТИ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ ПОВРЕЖДЕНИЯ: Ø износ рабочих поверхностей (основная причина выхода из строя) Ø схватывание рабочих поверхностей Ø усталостные разрушения при циклически действующих нагрузках ( машины ударного, вибрационного действия) Ø выплавление заливки вкладыша Ø заклинивание вала в подшипнике КРИТЕРИИ РАБОТОСПОСОБНОСТИ Ø износостойкость Ø сопротивление усталости антифрикционного материала при переменной нагрузке Ø теплостойкость Ø виброустойчивость

МЕТОДЫ РАСЧЕТА ПОДШИПНИКОВ СКОЛЬЖЕНИЯ 1. РАСЧЕТ, ОСНОВАННЫЙ НА ГИДРОДИНАМИЧЕСКОЙ ТЕОРИИ ТРЕНИЯ И СМАЗКИ: 2. МЕТОДЫ РАСЧЕТА ПОДШИПНИКОВ СКОЛЬЖЕНИЯ 1. РАСЧЕТ, ОСНОВАННЫЙ НА ГИДРОДИНАМИЧЕСКОЙ ТЕОРИИ ТРЕНИЯ И СМАЗКИ: 2. УСЛОВНЫЙ РАСЧЕТ, ПРИМЕНЯЕМЫЙ К ПОДШИПНИКАМ, РАБОТАЮЩИМ ПРИ ГРАНИЧНОМ ИЛИ ПОЛУЖИДКОСТНОМ ТРЕНИИ Размеры подшипников, работающих в режиме жидкостного трения, предварительно определяют по условному расчету. С учетом гидродинамической теории определяют необходимые зазоры и вид смазывающей жидкости.

РАСПРЕДЕЛЕНИЕ ДАВЛЕНИЯ НА ПОВЕРХНОСТИ ШИПА Fr Fr Проектируя все силы на направление внешней нагрузки, РАСПРЕДЕЛЕНИЕ ДАВЛЕНИЯ НА ПОВЕРХНОСТИ ШИПА Fr Fr Проектируя все силы на направление внешней нагрузки, получаем

ОПРЕДЕЛЕНИЕ ДИАМЕТРА ШИПА Fr Из совместного решения получаем ОПРЕДЕЛЕНИЕ ДИАМЕТРА ШИПА Fr Из совместного решения получаем

ПРОВЕРКА ПОДШИПНИКА ПО УСЛОВИЮ ТЕПЛОСТОЙКОСТИ Принимается допущение, что вся работа сил трения на трущихся ПРОВЕРКА ПОДШИПНИКА ПО УСЛОВИЮ ТЕПЛОСТОЙКОСТИ Принимается допущение, что вся работа сил трения на трущихся поверхностях преобразуется в тепло. В этом случае удельная работа сил трения не должна превышать определенного предела При установившемся движении f теплостойкости будет обеспечено при = const условие

РАСЧЕТ УПОРНЫХ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ Fa Fa где S – площадь опорной поверхности; РАСЧЕТ УПОРНЫХ ПОДШИПНИКОВ СКОЛЬЖЕНИЯ Fa Fa где S – площадь опорной поверхности;

ПРОВЕРКА ПОДШИПНИКА ПО УСЛОВИЮ ТЕПЛОСТОЙКОСТИ Считают, что элементарная работа сил трения одинакова для всех ПРОВЕРКА ПОДШИПНИКА ПО УСЛОВИЮ ТЕПЛОСТОЙКОСТИ Считают, что элементарная работа сил трения одинакова для всех точек опорной поверхности пяты Эта гипотеза предполагает резко неравномерный характер распределения давления на опорной поверхности пяты со значительным повышением его в центре Применение кольцевых пят позволяет равномерное распределение давления. обеспечить более

СХЕМЫ ПОДПЯТНИКОВ а – гидродинамического; б – гидростатического. СХЕМЫ ПОДПЯТНИКОВ а – гидродинамического; б – гидростатического.