Скачать презентацию On the role of gravity in Holography Скачать презентацию On the role of gravity in Holography

f06a498c35d6a8f618240c3d161f90b8.ppt

  • Количество слайдов: 17

On the role of gravity in Holography • Current work: A Minkowski observer restricted On the role of gravity in Holography • Current work: A Minkowski observer restricted to part of space will observe: • Radiation. • Area scaling of thermodynamic quantities • Bulk boundary correspondence*. • Future directions: • Kruskal observer • Ad. S observer • Entanglement of a single string • Experimental verification

A Minkowski observer in part of Minkowski space. out Restricted measurements V in = A Minkowski observer in part of Minkowski space. out Restricted measurements V in = No access

Radiation in( ’in, ’’in) = Trout ( ’ ’’ Exp[-SE] Df D out +)= Radiation in( ’in, ’’in) = Trout ( ’ ’’ Exp[-SE] Df D out +)= ’(x) f(x, 0)= (x) t f(x, 0 -)= ’’(x) f(x, 0+) = ’in(x) out(x) f(x, 0 -) = ’’in(x) out(x) ’in(x) in ’’in Exp[-SE] Df ’(x) ’’(x) x ’’in(x) f(x, 0+) = ’in(x) f(x, 0 -) = ’’in(x)

Explicit example Kabbat & Strassler (1994) in ’’in Exp[-SE] Df ’| e-b. HR| ’’ Explicit example Kabbat & Strassler (1994) in ’’in Exp[-SE] Df ’| e-b. HR| ’’ f(x, 0+) = ’in(x) f(x, 0 -) = ’’in(x) t ’in(x) x ’’in(x)

Thermodynamics out V in Thermodynamics out V in

Entropy: Sin=Tr( inln in) Srednicki (1993) Sin=Sout Entropy: Sin=Tr( inln in) Srednicki (1993) Sin=Sout

Other quantities R. Brustein and A. Y. (2003) Heat capacity: Generally, we consider: Other quantities R. Brustein and A. Y. (2003) Heat capacity: Generally, we consider:

Area scaling of fluctuations (OV)2 = V V O(x)O(y) ddx ddy = V V Area scaling of fluctuations (OV)2 = V V O(x)O(y) ddx ddy = V V F(|x-y|) ddx ddy = D( ) F( ) d D( )= V V d( x y ) ddx ddy = GVV d-1 – GSS(V) d+O( d+1) F(x)= 2 f(x) Since F( ) = eiq cosq F (q) ddq and F (q) ~ qa (OV)2 = - ∂ (D( )/ d-1) d-1 ∂ f( ) d ∂ (D( )/ d-1) S Introduce U. V. cutoff short ~ 1/L distances

 OV 1 OV 2 Evidence for bulk-boundary correspondence OV 1 OV 2 - OV 1 OV 2 Evidence for bulk-boundary correspondence OV 1 OV 2 - OV 1 OV 2 V 1 V 2 Pos. of V 2 OV 1 OV 2 S(B(V 1) B(V 2)) V 1 V 2 Pos. of V 2

A working example Large N limit A working example Large N limit

Summary Area scaling of Fluctuations due to entanglement Statistical ensemble due to restriction of Summary Area scaling of Fluctuations due to entanglement Statistical ensemble due to restriction of d. o. f V Unruh radiation and Area dependent thermodynamics V Boundary theory for fluctuations V A Minkowski observer restricted to part of space will observe: • Radiation. • Area scaling of thermodynamic quantities. • Bulk boundary correspondence*.

Future directions • • Kruskal observer Ad. S observer Entanglement of a single string Future directions • • Kruskal observer Ad. S observer Entanglement of a single string Experimental verification

Kruskal observer Restricted observer Kruskal Observer V Schwarschield observer V General relationevolution Non unitary Kruskal observer Restricted observer Kruskal Observer V Schwarschield observer V General relationevolution Non unitary of in V Israel (1976)

Ad. S observer Ad. S ? V V CFT ? V Ad. S observer Ad. S ? V V CFT ? V

Experimental verification • Prepare a pure quantum state. • Make repetitive measurements. • Measure Experimental verification • Prepare a pure quantum state. • Make repetitive measurements. • Measure part of the system.

Entanglement of a single string (DM)2 ln(l) l Entanglement of a single string (DM)2 ln(l) l

Summary • Radiation, area scaling laws and a bulkboundary correspondence may be attributed to Summary • Radiation, area scaling laws and a bulkboundary correspondence may be attributed to entanglement. • It is unclear whether gravity alone is responsible for area dependent quantities or if it is supplemented by quantum entanglement.