Скачать презентацию On May 4 2011 Intel Corporation announced what Скачать презентацию On May 4 2011 Intel Corporation announced what

e1ffe6f9bfa5dcb4b60eaac05e52ad54.ppt

  • Количество слайдов: 21

On May 4, 2011, Intel Corporation announced what it called the most radical shift On May 4, 2011, Intel Corporation announced what it called the most radical shift in semiconductor technology in 50 years. A new 3 -dimensional transistor design will enable the production of integrated-circuit chips that operate faster with less power… The 3 -D Tri-Gate transistor is a variant of the Fin. FET developed at UC-Berkeley, and is being used in Intel’s 22 nmgeneration microprocessors.

Lecture 24 OUTLINE The MOSFET (cont’d) • Advanced MOSFET structures Reading: Hu 7. 8 Lecture 24 OUTLINE The MOSFET (cont’d) • Advanced MOSFET structures Reading: Hu 7. 8

Why New Transistor Structures? • Off-state leakage (IOFF) must be suppressed as Lg is Why New Transistor Structures? • Off-state leakage (IOFF) must be suppressed as Lg is scaled down – allows for reductions in VT and hence VDD • Leakage occurs in the region away from the channel surface Let’s get rid of it! Lg Thin-Body MOSFET: Gate Source Drain Buried Oxide Substrate “Silicon-on. Insulator” (SOI) Wafer 3

Thin-Body MOSFETs • IOFF is suppressed by using an adequately thin body region. – Thin-Body MOSFETs • IOFF is suppressed by using an adequately thin body region. – Body doping can be eliminated higher drive current due to higher carrier mobility Ultra-Thin Body (UTB) Lg Double-Gate (DG) Gate Source Drain Buried Oxide Substrate TSi < (1/4) Lg TSi Drain Source TSi Gate TSi < (2/3) Lg 4

Effect of TSi on OFF-state Leakage Lg = 25 nm; tox, eq = 12Å Effect of TSi on OFF-state Leakage Lg = 25 nm; tox, eq = 12Å TSi = 10 nm TSi = 20 nm G G 106 3 x 102 S Leakage Current Density [A/cm 2] @ VDS = 0. 7 V 0. 0 D G 10 -1 Si Thickness [nm] 4. 0 8. 0 12. 0 S D 16. 0 20. 0 G IOFF = 2. 1 n. A/ m IOFF = 19 A/ m 5

Double-Gate MOSFET Structures PLANAR: VERTICAL FINFET: L. Geppert, IEEE Spectrum, October 2002 6 Double-Gate MOSFET Structures PLANAR: VERTICAL FINFET: L. Geppert, IEEE Spectrum, October 2002 6

DELTA MOSFET D. Hisamoto, T. Kaga, Y. Kawamoto, and E. Takeda (Hitachi Central Research DELTA MOSFET D. Hisamoto, T. Kaga, Y. Kawamoto, and E. Takeda (Hitachi Central Research Laboratory), “A fully depleted lean-channel transistor (DELTA) – a novel vertical ultrathin SOI MOSFET, ” IEEE Electron Device Letters Vol. 11, pp. 36 -39, 1990 • Improved gate control observed for Wg < 0. 3 m – LEFF= 0. 57 m Wl = 0. 4 m 7

Double-Gate Fin. FET • Self-aligned gates straddle narrow silicon fin • Current flows parallel Double-Gate Fin. FET • Self-aligned gates straddle narrow silicon fin • Current flows parallel to wafer surface Gate Length = Lg Source S D Gate 1 Drain Current Flow Gate 2 G G Fin Height Hfin = W Fin Width Wfin = TSi 8

1998: First n-channel Fin. FETs D. Hisamoto, W. -C. Lee, J. Kedzierski, E. Anderson, 1998: First n-channel Fin. FETs D. Hisamoto, W. -C. Lee, J. Kedzierski, E. Anderson, H. Takeuchi, K. Asano, T. -J. King, J. Bokor, and C. Hu, “A folded-channel MOSFET for deep-sub-tenth micron era, ” IEEE International Electron Devices Meeting Technical Digest, pp. 1032 -1034, 1998 Plan View Lg = 30 nm Wfin = 20 nm Hfin = 50 nm • Devices with Lg down to 17 nm were successfully fabricated 9

1999: First p-channel Fin. FETs X. Huang, W. -C. Lee, C. Kuo, D. Hisamoto, 1999: First p-channel Fin. FETs X. Huang, W. -C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y. -K. Choi, K. Asano, V. Subramanian, T. -J. King, J. Bokor, and C. Hu, “Sub 50 -nm Fin. FET: PMOS, ” IEEE International Electron Devices Meeting Technical Digest, pp. 67 -70, 1999 Lg = 18 nm Wfin = 15 nm Hfin = 50 nm Transmission Electron Micrograph 10

UC-Berkeley Fin. FET Patent + 27 additional claims… 11 UC-Berkeley Fin. FET Patent + 27 additional claims… 11

2001: 15 nm Fin. FETs Y. -K. Choi, N. Lindert, P. Xuan, S. Tang, 2001: 15 nm Fin. FETs Y. -K. Choi, N. Lindert, P. Xuan, S. Tang, D. Ha, E. Anderson, T. -J. King, J. Bokor, C. Hu, "Sub-20 nm CMOS Fin. FET technologies, ” IEEE International Electron Devices Meeting Technical Digest, pp. 421 -424, 2001 Transfer Characteristics Output Characteristics Wfin = 10 nm; Tox = 2. 1 nm 12

2002: 10 nm Fin. FETs SEM image: B. Yu, L. Chang, S. Ahmed, H. 2002: 10 nm Fin. FETs SEM image: B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C. -Y. Yang, C. Tabery, C. Hu, T. -J. King, J. Bokor, M. -R. Lin, and D. Kyser, "Fin. FET scaling to 10 nm gate length, " International Electron Devices Meeting Technical Digest, pp. 251 -254, 2002 TEM images • These devices were fabricated at AMD, using optical lithography. 13

Tri-Gate FET (Intel Corp. ) Lg = 60 nm Wfin = 55 nm Hfin Tri-Gate FET (Intel Corp. ) Lg = 60 nm Wfin = 55 nm Hfin = 36 nm B. Doyle et al. , IEEE Electron Device Letters, Vol. 24, pp. 263 -265, 2003 14

Bulk Fin. FET (Samsung Electronics) • Fin. FETs can be made on bulk-Si wafers Bulk Fin. FET (Samsung Electronics) • Fin. FETs can be made on bulk-Si wafers ülower cost üimproved thermal conduction • 90 nm Lg Fin. FETs demonstrated • Wfin = 80 nm • Hfin = 100 nm DIBL = 25 m. V C. -H. Lee et al. , Symposium on VLSI Technology Digest, pp. 130 -131, 2004 15

2004: High-k/Metal Gate Fin. FET D. Ha, H. Takeuchi, Y. -K. Choi, T. -J. 2004: High-k/Metal Gate Fin. FET D. Ha, H. Takeuchi, Y. -K. Choi, T. -J. King, W. Bai, D. -L. Kwong, A. Agarwal, and M. Ameen, “Molybdenum-gate Hf. O 2 CMOS Fin. FET technology, ” IEEE International Electron Devices Meeting Technical Digest, pp. 643 -646, 2004 16

Impact of Fin Layout Orientation L. Chang et al. (IBM), SISPAD 2004 • If Impact of Fin Layout Orientation L. Chang et al. (IBM), SISPAD 2004 • If the fin is oriented || or to the wafer flat, the channel surfaces lie along (110) planes. – Lower electron mobility – Higher hole mobility (Series resistance is more significant at shorter Lg. ) • If the fin is oriented 45° to the wafer flat, the channel surfaces lie along (100) planes. 17

May 4, 2011: Intel Announcement • Ivy Bridge-based Intel® Core™ family processors will be May 4, 2011: Intel Announcement • Ivy Bridge-based Intel® Core™ family processors will be the first high-volume chips to use 3 -D Tri-Gate transistors. • This silicon technology breakthrough will also aid in the delivery of more highly integrated Intel® Atom™ processor-based products… http: //newsroom. intel. com/community/intel_newsroom/blog/2011/05/04/intel-reinvents-transistors-using-new-3 -d-structure 18

22 nm node Tri-Gate FETs • Lg = 30 -34 nm; Wfin = 8 22 nm node Tri-Gate FETs • Lg = 30 -34 nm; Wfin = 8 nm; Hfin = 34 nm • High-k/metal gate stack, EOT = 0. 9 nm • Channel strain techniques Transfer Characteristics IOFF vs. IEFF PMOS IOFF vs. IEFF NMOS C. Auth et al. , Symp. VLSI Technology 2012 19

National Science Foundation (NSF) Science and Technology Center (STC) for Energy Efficient Electronics Science National Science Foundation (NSF) Science and Technology Center (STC) for Energy Efficient Electronics Science Goal: Develop a new switch that can operate with VDD = 1 m. V PI: Eli Yablonovitch (UC Berkeley) 10 -yr project, started 15 Sep 2010 • Theme I: Nanoelectronics (Prof. Eli Yablonovitch) • Theme II: Nanomechanics (Prof. Tsu-Jae King Liu) • Theme III: Nanomagnetics (Prof. Jeffrey Bokor) • Theme IV: Nanophotonics (Prof. Ming Wu) Contra Costa-UC Berkeley-MIT-LATTC-Stanford-Tuskegee 20

A Vision of the Future The “Cloud” Diversification of Devices & Materials Heterogeneous Integration A Vision of the Future The “Cloud” Diversification of Devices & Materials Heterogeneous Integration Better Energy Efficiency & Functionality, Investment Lower Cost Market Growth Mobile Devices J. Rabaey ASPDAC’ 08 The “Swarm” Sensatex Philips Information technology will be • pervasive • embedded • human-centered • solving societal scale problems Environment Energy Health care Disaster response Transportation 21