Скачать презентацию Omsk State University F M Dostoevsky Department of Скачать презентацию Omsk State University F M Dostoevsky Department of

Angl Основы исслед Головченко.ppt

  • Количество слайдов: 7

Omsk State University. F. M. Dostoevsky Department of Inorganic Chemistry The study of adsorption Omsk State University. F. M. Dostoevsky Department of Inorganic Chemistry The study of adsorption desorption interaction of amino acids with calcium phosphates 1 Golovchenko K. K. 2 year , HHM 601 O Scientific adviser: Golovanova O. A. Professor, Doctor of Geologo Mineralogical Sciences Position Professor Omsk 2017

 Relevance Calcium phosphates are part of bioorganic and pathogenic mineral formations. Interaction of Relevance Calcium phosphates are part of bioorganic and pathogenic mineral formations. Interaction of organic and mineral components is important in such processes of biogenic crystallization, as the formation of bone matrix mammals, as well as the emergence and growth of pathogenic entities. There are some assumptions, according to which the basis of the processes of mineralization lies in the adsorption interaction of free amino acids and associated protein molecules with inorganic components of biological liquids. In particular, such processes include adsorption desorption interaction. The mechanism of their interaction is not fully understood. In this regard, relevant studies aimed at studying the regularities of adsorption of amino acids on calcium phosphates. 2

The purpose of this paper is to study the specific features of the adsorption The purpose of this paper is to study the specific features of the adsorption desorption interaction of amino acids with calcium phosphates while varying the p. H of the solution. Tasks: The synthesis of hydroxylapatite, the study of its properties when the p. H of the solution is varied; Setting up an adsorption experiment; The study of adsorption of amino acids on hydroxylapatite with varying parameters of the initial solution; The study of desorption of amino acids. 3

LITERATURE REVIEW 1. 2. 3. 4. 5. 6. 7. 8. Adsorption Segvich S. J. LITERATURE REVIEW 1. 2. 3. 4. 5. 6. 7. 8. Adsorption Segvich S. J. , Smith H. C. , Kohn D. H. 2009 The adsorption of preferential binding peptides to apatite based materials. Biomaterials 30, P. 1287– 1298. Zhu X. D. , Zhang H. J. , Fan H. S. , Li W. , Zhang X. D. 2009 Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Acta Biomater. 6, P. 1536– 1541. Dos Santos E. , Farina M. , Soares G. , Anselme K. 2008 Surface energy of hydroxyapatite and β tricalcium phosphate ceramics driving serum protein adsorption and osteoblast adhesion. J. Mater. Sci. Mater. Med. 19, P. 2307– 2316. Zhu X. D. , Fan H. S. , Xiao Y. M. , Li D. X. , Zhang H. J. , Luxbacher T. , Zhang X. D. 2009 Effect of surface structure on protein adsorption to biphasic calcium phosphate ceramics in vitro and in vivo. Acta Biomater. 5, P. 1311– 1318. Zhu X. D. , Zhang H. J. , Fan H. S. , Li W. , Zhang X. D. 2010 Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Acta Biomater. 6, P. 1536– 1541. Zhu X. D. , Fan H. S. , Zhao C. Y. , Lu J. , Ikoma T. , Tanaka J. , Zhang X. D. 2007 Competitive adsorption of bovine serum albumin and lysozyme on characterized calcium phosphates by polyacrylamide gel electrophoresis method. J. Mater. Sci. Mater. Med. 18, P. 2243– 2249. Shen J. W. , Wu T. , Wang Q. , Pan H. H. 2008 Molecular simulation of protein adsorption and desorption on hydroxyapatite surfaces. Biomaterials 29, P. 513– 532. Yang Y. , Cui Q. A. , Sahai N. 2010 How does bone sialoprotein promote the nucleation of hydroxyapatite? A molecular dynamics study using model peptides of different conformations. Langmuir 26, P. 9848– 9859. 4

9. Pan H. , Tao J. , Xu X. , Tang R. 2007 Adsorption 9. Pan H. , Tao J. , Xu X. , Tang R. 2007 Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level. Langmuir 23, P. 8972– 8981. 10. Brooks B. R. , et al. 2009 CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, P. 1545– 1614. 11. Kang Y. , Li X. , Tu Y. , Wang Q. , Agren H. 2010 On the Mechanism of Protein Adsorption onto Hydroxylated and Nonhydroxylated Ti. O 2 Surfaces. J. Phys. Chem. C. 114, P. 14 496 – 14 502. 12. Skelton A. A. , Liang T. , Walsh T. R. 2009 Interplay of sequence, conformation, and binding at the peptide–Titania interface as mediated by water. ACS Appl. Mater. Interf. 1, P. 1482– 1491. 13. Shen J. W. , Wu T. , Wang Q. , Kang Y. 2008 Induced stepwise conformational change of human serum albumin on carbon nanotube surfaces. Biomaterials 29, P. 3847– 3855. 14. Forte G. , Grassi A. , Marletta G. 2007 Molecular modeling of oligopeptide adsorption onto functionalized quartz surfaces. J. Phys. Chem. B. 111, P. 11 237– 11 243. 15. Bhowmik R. , Katti K. S. , Katti D. 2007 Molecular dynamics simulation of hydroxyapatite –polyacrylic acid interfaces. Polymer 48, P. 664– 674. 16. Bhowmik R. , Katti K. S. , Verma D. , Katti D. R. 2007 Probing molecular interactions in bone biomaterials: through molecular dynamics and Fourier transform infrared spectroscopy. Mater. Sci. Eng. C 27, P. 352– 371. 5

17. 18. 19. 20. de Leeuw N. H. , Rabone J. A. L. 2007 17. 18. 19. 20. de Leeuw N. H. , Rabone J. A. L. 2007 Molecular dynamics simulations of the interaction of citric acid with the hydroxyapatite (0001) and (011− 0) surfaces in an aqueous environment Cryst. Eng. Commun. 9. P. 1178 1186 Rimola A. , Corno M. , Zicovich Wilson C. , Ugliengo P. 2008 Ab initio modelling of protein/biomaterial interactions: glycine adsorption at hydroxyapatite surfaces J. Am. Chem. Soc 130. P. 16181 16183. Rimola A. , Corno M. , Zicovich Wilson C. M. , Ugliengo P. 2009 Ab initio modeling of protein/biomaterial interactions: competitive adsorption between glycine and water onto hydroxyapatite surfaces Phys. Chem. Phys 11. P. 9005 9007. Almora Barrios N. , Austen K. F. , de Leeuw N. H. 2009 Density functional theory study of the binding of glycine, proline, and hydroxyproline to the hydroxyapatite (0001) and (010) surfaces Langmuir 25. P. 5018 5025. 6

 1. 2. 3. 4. Crystal chemistry of calcium phosphates Silva G. A. , 1. 2. 3. 4. Crystal chemistry of calcium phosphates Silva G. A. , Coutinho O. P. , Ducheyne P. , Reis R. L. 2007 Materials in particulate form for tissue engineering. II. Applications in bone. J. Regen. Med. V. 1. P. 97– 106. Desorption of amino acids Xiuli Dong, Qi Wang, Tao Wu, and Haihua Pan. Understanding Adsorption Desorption Dynamics of BMP 2 on Hydroxyapatite (001) Surface. Department of Chemistry, Zhejiang University, Hangzhou, China. Biophysical Journal. V. 93 August 2007. Р. 750 – 759. Chen, X. , Q. Wang, J. Shen, H. Pan, and T. Wu. 2007. Adsorption of LRAP on hydroxyapatite (001) surface through –COO claws. J. Phys. Chem. C. 111. Р. 1284– 1290. Huimin Wang ; Guihua Nie ; Kui Fu. Cellular Automata Model of Protein Adsorption on the Surface of Bioceramics. 2008. P. 417 420. (DOI: 10. 1109/ICNC. 2008. 611) Chie Kojima, Kenji Watanabe. Adsorption and Desorption of Bioactive Proteins on Hydroxyapatite for Protein Delivery Systems. J Drug Deliv. 2012. P. 932461. (doi: 10. 1155/2012/932461) 7