
c51e30cf1c51d27ee86fa174c236d480.ppt
- Количество слайдов: 56
Nissim Silanikove Department of Animal Physiology, Agricultural Research Organization, The Volcani Center, Israel
Interactions between bacteria type, caseinolysis and physico-chemical properties in caprine, ovine and bovine milk Cork 2005
Milk quantity: Yield of milk, fat, total proteins, casein and curd. Milk quality: Internal bacterial contamination, somatic cell count, secreted enzymes. Cork 2005
Bacterial infection may affect caseinolysis and micelle properties by three main routes: 1. directly, by secreting extracellular enzymes different bacteria will cause different "type" of physico-chemical damage to the milk Cork 2005
2. activate the host innate immune system milk from different type of bacteria with similar SCC will result in similar damage to the milk 3. a combination of 1 and 2 Cork 2005
Hypothesis: CASEINOLYSIS INDEX Infected gland ~ 3, 000 Cell depended Healthy gland ~ 20, 000 Cows ~ 800, 000 goats and sheep Bacteria and Cells depended Cork 2005
Somatic cell count and gross composition as bases for grading milk quality in sheep and goats
Aim: to calculate the losses of milk and cheese loss as related to the level of subclinical udder infection in a herd. Elucidated the major factors that influence milk yield and, consequently, curd yield in Assaf sheep and Saanen and Shami × Anglo-Nubian goats,
The LS Means of CMT and log SCC in uninfected and infected udders and their different significance level (P [F]). Bacteriological Status Sheep Goats CMT Log SCC Uninfected 0. 65 b 5. 33 b 0. 91 b 5. 51 b Infected 2. 23 a 6. 38 a 1. 59 a 6. 12 a P [F] 0. 0001
The LS Means of fat, protein and lactose in uninfected and infected udders and their different significance level (P [F]). Bacteriological Status Sheep Goats Fat Protein Lactose Uninfected 55. 9 49. 0 b 49. 4 a 37. 4 a 38. 1 45. 9 a Infected 56. 9 50. 3 a 42. 9 b 35. 1 b 38. 3 44. 0 b P [F] NS 0. 0001 0. 04 NS 0. 0001
Quantifying the damage caused by IMI with CNS From data collected in the present study and those published recently two equations could be developed to calculate milk yield loss and total curd yield loss. These equations combine milk loss and reduction in curd yield per litre of milk in sheep or goats with sub clinical IMI: Milk yield loss (%) = 100 - [C × 100 + (100 -C) × IUY]/100 Total curd yield loss (%) = 100 - [C × 100 + (100 -C) × (IUY-ICY × D)]/100 where: C = % uninfected udders; IUY = percentage to which milk production is reduced by sub clinical udder infection; ICY = percentage of curd lost because of sub clinical udder infection; D = litres of milk needed to produce 1 kg of cheese (30 %moister)
Calculated percent milk and curd loss in sheep and goats herd due to rate of infection with CNS according to the equations Infection rate Projected SCC Milk loss (%) Total curd loss (%) Half-udder model Herd Sheep 25 760, 000 12 8 17 12 50 1, 300, 000 25 15 34 24 75 2, 100, 000 38 23 51 36 Goat 25 640, 000 8 3 21 16 50 920, 000 15 6 41 32 75 1, 300, 000 23 8 62 48
The model: Each goat, sheep or cow tested had at leas one uninfected quarter (NBF) and one of the other quarters infected with one of the following bacteria: Bacteria Number NBF Streptococci - 23 CNS + 33 11 E. Coli 8 S. aureus 9 Cork 2005
Lactose concentration: sheep or goat with one gland infected with CNS specie and the contra-lateral being free Lactose, g/L Sheep - 25. 1%, P < 0. 0001 Goat - 11. 3%, P < 0. 004
Milk yield (half) of sheep or goat infected with CNS specie in one gland the contra-lateral being free. Open bars – S; Hatched bars – G
The ratio in the reduction in milk yield between goats and sheep in comparison to the ratio of reduction in lactose concentration
Conclusion l The greater reduction in lactose concentration in infected glands of sheep than in goats, explains the higher loss of milk yield in sheep
Fat concentration: sheep or goat with one gland infected with CNS specie and the contra-lateral being free fat, g/L Sheep - 5%, NS Goat - 0. 03%, NS
Protein concentration: sheep or goat with one gland infected with CNS specie and the contra-lateral being free protein, g/L Sheep - 9%, P < 0. 0009 Goat + 2. 3%, P <0. 07
Casein concentration: sheep or goat with one gland infected with CNS specie and the contra-lateral being free casein , g/L Sheep - 12%, P < 0. 0002 Goat + 0. 003%, NS
Whey concentration: sheep or goat with one gland infected with CNS specie and the contra-lateral being free Whey, g/L Sheep + 7. 5%, P < 0. 07 Goat +11. 5%, P < 0. 0001
CONCLUSIONS l l In goats the increase in total protein concentration relates to increase in total whey concentration In sheep the reduction in total protein concentration relates to a decrease in casein concentration, which overweighs the increase in whey concentration
Proteose-peptone concentration: sheep or goat with one gland infected with CNS specie and the contra-lateral being free P-p, g/L Sheep + 247%, P < 0. 0001 Goat +151%, P < 0. 0001
Ca activity: sheep or goat with one gland infected with CNS specie and the contra-lateral being free Ca, mmol Sheep - 30. 1%, P < 0. 002 Goat -14. 2%, P < 0. 002
Conclusions l l l In both goats and sheep, infection is associated with increased casein degradation The increase in casein degradation is greater in sheep then in goats Measurement of Ca activity is potentially a convenient and cheap method to track casein degradation
Plasminogen activator activity: sheep or goat with one gland infected with CNS specie and the contra-lateral being free PA activity, units/m. L Sheep + 239%, P < 0. 002 Goat +128%, P < 0. 05
Plasminogen activity: sheep or goat with one gland infected with CNS specie and the contra-lateral being free PL activity, units/m. L Sheep - 32. 2%, P < 0. 001 Goat 0%, NS
Conclusions l Plasminogen activator activity in goats is unusually high and consequently all the plasminogen in the gland is converted to plasmin
Plasmin activity: sheep or goat with one gland infected with CNS specie and the contra-lateral being free PL activity, units/m. L Sheep + 73. 7%, P < 0. 0007 Goat + 195%, P < 0. 0003
Conclusions l l l The basal level of PL activity is higher in sheep than in goats, which explains the higher basal level of proteose-peptones PL activity in infected glands is higher in sheep than in goats, which explain the higher increase in proteose-peptones In sheep, the source of increased PL activity in the infected gland is accelerated conversion of plasminogen to plasmin, whereas in goats the source is external
Question: How comes that in goats accelerated degradation of casein is not reflected in casein concentration, whereas in sheep it does? l l Answer: In goats the reduction in casein output (30%) is essentially similar to the reduction in milk yield, whereas in sheep the reduction in casein output (60%) is higher than in milk volume (53%). Thus, both in goats and sheep part of the increased loss in casein yield is related to increased degradation of casein
Effect of subclinical mastitis on curd yield Yc, and clotting time Tc, in milk of infected vs. uninfected udder halves of sheep.
Effect of subclinical mastitis on curd yield, Yc (a) and clotting time, Tc (b), in milk of infected vs. uninfected udder halves of goats. Open bars – uninfected; Hatched bars – infected
SCC and cell differentiation according to bacteria isolates in the milk Bacteria Number SCC (x 1000) PMN (%) CD 8+ (%) CD 14+ (%) NBF 33 116± 20 c 32± 3. 3 c 4. 4± 0. 8 b 5. 0± 1. 1 Strep. 23 3379± 350 a 58± 5. 2 ab 8. 9± 1. 6 ab 9. 4± 1. 6 CNS 11 543± 129 b 54± 8. 5 ab 17. 7± 3. 6 a 11. 3± 2. 9 E. coli 9 4333± 443 63± 20. 1 a a 9. 3± 7. 5 ab 10. 3± 7. 2 S. aureus 9 1148± 163 b 1. 3± 0. 1 c 5. 8± 0. 6 82± 1. 7 a Cork 2005
No significant differences were fund among the different bacteria in fat, protein and casein Lactose concentrations was significantly Lower in milk from all infected quarters compared to milk from uninfected quarters, regardless of type of bacteria Cork 2005
Two parameters were tested using the Optigraph© (Alliance Instruments) according to bacteria isolates in the quarter milk Clotting time (in seconds) Curd firmness (volts) 30 min after coagulating enzyme additions Cork 2005
Curd firmness (volts) Clotting time (sec) 1 2 3 Cork 2005
Clotting time and Curd firmness Bacteria NBF Strep. CNS Clotting time (sec) 650± 63 Curd firmness (V) 6. 58± 0. 2 2490± 340 1255± 468 1. 02± 0. 3 3. 80± 0. 8 1078± 193 3. 28± 0. 7 E. coli S. aureus Cork 2005
Effects of mammary gland infection on plasminogen (PLG), plasminogen activator (PA) and plasmin (PL) Bacteria PLG (unit/m. L) PA (unit/m. L) NBF 146. 2 531 10. 5 b Strep. 167. 8 518 23. 3 a CNS 174. 4 530 18. 8 E. coli 327 542 20. 0 156. 7 555 17. 2 a a a S. aureus Plasmin (unit/m. L) 1 unit is the amount of PLG, PA or PL that produces a Change of 0. 1 in absorbance at 405 nm in 60 min Cork 2005
Correlation matrix Clotting time (sec) Curd firmness (V) log SCC 0. 48; P = 0. 020 - 0. 46; P = 0. 001 Lactose - 0. 64; P = 0. 002 0. 61; P = 0. 003 Whey 0. 83; P = 0. 001 - 0. 72; P = 0. 001 pp 0. 59; P = 0. 005 - 0. 60; P = 0. 004 Plasmin 0. 65; P = 0. 001 - 0. 65; P = 0. 001 Casein 0. 01; NS 0. 08; NS Cork 2005
Protein, r - NS Casein, r - NS Whey, r = 0. 83 Cork 2005
SCC, r = 0. 46 Cork 2005
Cork 2005
CURD FROM HELTHY GLANDS
CURD FROM INFECTED GLAND
AFTER ONE DAY OF MATURATION HEALTHY INFECTED
AFTER 3 MONTH OF MATURATION HEALTHY INFECTED
SDS PAGE Tricine 52 35 28 21 14 0% 0% 50% 100%
FPLC א' ה' ד' ג' ב'
OPTYGRAPH EFFECT OF ADDING VARIOUS P-P FRACTIONS (O. 5 MG/ML) TO BACTERIAL FREE MILK CONTROL
Hypothesis: Infected glands ~ 200, 000 Healthy gland ~ 20, 000 Bacteria depended Cork 2005
The results suggest that different bacteria affects caseinolysis in a different manner directly or indirectly, influencing the quantity and quality of milk products Cork 2005
The main conclusions from this study are: 2. Casein has low value for predicting milk quality for cheese production 3. Whey is a convenient 4. This study shows that in order to understand milk quality it will be important to study the interactions among specific bacteria the innate immune system and caeinolysis Cork 2005
Thank you: I hope that this lecture will contribute to our ability to raise healthier cows and produce better dairy products BOLFA 2006