Скачать презентацию Module 1 Anaemia an introduction Module prepared Скачать презентацию Module 1 Anaemia an introduction Module prepared

3be78f79eeb01f146a5a176cb5e80e76.ppt

  • Количество слайдов: 77

Module 1 | Anaemia an introduction Module prepared by: • Ben Woodman-Smith; Medical Student, Module 1 | Anaemia an introduction Module prepared by: • Ben Woodman-Smith; Medical Student, Cardiff University • Steve Allen; Professor of Paediatrics and International Health, College of Medicine, Swansea University • Ann Benton; Consultant Haematologist, ABMU Health Board, Swansea

Contents Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this Contents Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes • 1. 0. Introduction anaemia • 1. 1. How to use this module • 1. 2. Learning outcomes The red cell life cycle 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death • 2. 0. The erythrocyte: an overview • 2. 1. Erythropoiesis • 2. 2. The red cell membrane • 2. 3. Haematinics • 2. 4. Red cell metabolism • 2. 5. Haemoglobin and oxygen transport • 2. 6. Ageing and death of the red blood cell. o Quiz 1 Anaemia; an overview Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features • • • o Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. 3. 0. Defining anaemia. 3. 1. Prevalence of anaemia 3. 2. Clinical features of anaemia Quiz 2 Classifying Anaemia • • 4. 0. Classification of anaemia 4. 1. Red cell indices 4. 2. Morphological classification 4. 3. Aetiological classification of anaemia. Interpretation of Blood film • 5. 0. Basic interpretation of a blood film. • 5. 1. Anaemia: essential bites o Quiz 3 Glossary References Please click here to move forwards or backwards through the module

Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Welcome to the anaemia module! | Introduction 1. 1 Anaemia can be defined as a reduction in the haemoglobin in the blood below normal range for age and sex. Essentially, anaemia is defined as haemoglobin (Hb) concentration: For adult males < 13. 5 g/dl For adult women < 11. 5 g/dl Anaemia is a global public health problem affecting both developing and developed countries. It has major consequences for human health as well as social and economic development. In 2008, iron deficiency anaemia was considered to be among the most important contributing factors to the global burden of disease. Given the importance of anaemia both globally and within the UK, it is essential that any medical student or junior doctor can understand the major causes of anaemia, recognise it’s clinical features, interpret blood results and respond with appropriate management. Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. Image above: scanning electron microscope image of red blood cells. Image left: Global WHO map of anaemia in preschool age children.

| how to use this module 1. 2 Partners in Global Health Education Contents | how to use this module 1. 2 Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes • 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. This self-directed learning (SDL) module has been designed for medical and other health care students. • We suggest that you start with the learning objectives and try to keep these in mind as you go through the module slide by slide, in order and at your own pace. • Complete the true/false questions as you go along to assess your learning. • You should research any issues that you are unsure about. Look in your textbooks, access the on-line resources indicated at the end of the module and discuss with your peers and teachers. • Finally, enjoy your learning! We hope that this module will be enjoyable to study and complement your learning about anaemia from other sources.

| how to use this module Partners in Global Health Education Contents 1. 1 | how to use this module Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death KEY Information within red boxes is considered core knowledge Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. Information within the grey boxes is considered optional to gain a broader understanding of anaemia and its causes. Key point! Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification Information within the green boxes is considered useful knowledge These are placed along the way within this module. Based on the learning objectives, these comment boxes are aimed at highlighting the important links between the structure, physiology and life cycle of the red blood cell to the pathological processes resulting in anaemia. Anaemia essential bites. These cards are designed to provide some essential information on key anaemias. These are accessible throughout the module. 1. 2

| learning outcomes (L. O. ) 1. 3 Partners in Global Health Education Contents | learning outcomes (L. O. ) 1. 3 Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. By the end of the module, you should be able to…. • List the key components of erythropoiesis (red cell production) • Bone marrow stroma, haemopoietic stem cells, tissue macrophages • Renal system (erythropoietin) • Functional DNA (globin genes) • Nutrition (Iron, B 12, Folate, amino acids) • Link the components of red cell structure to red cell development and function • components of haemoglobin molecule • metabolic pathways active in red blood cells • features of red cell membrane • Link the classification of anaemia to the physiology of erythropoiesis and the influence of systemic pathology • Interpret red cell indices reported in a full blood count and correlate with red cell morphological classification and underlying causes of anaemia • Define anaemia and know the clinical symptoms and signs to look out for • Recognize some key blood film abnormalities 6. 0. Glossary 7. 0. References please click on contents to repeat a section. L. O. We will place these objectives along the route to help direct your learning….

| the erythrocyte: an overview 2. 1 Partners in Global Health Education Contents page | the erythrocyte: an overview 2. 1 Partners in Global Health Education Contents page 2. 1. The erythrocyte: an overview. Welcome to section one. When learning about anaemia and in fact haematology in general, it is essential to go back to square one and understand the basics of cell production, function and life cycle. Within this first module we aim to tie some basic physiology of the red blood cell to the pathological manifestations of anaemia. If fully understood, it will remain as a backbone for future clinical knowledge whenever approaching an anaemic patient. With this in mind we now look in some detail at the structure, function and life cycle of the red blood cell. Please click here for next slide. An erythrocyte is a fully developed red blood cell!

| the erythrocyte: an overview 2. 1 Partners in Global Health Education Contents page | the erythrocyte: an overview 2. 1 Partners in Global Health Education Contents page *L. O. Link the components of red cell structure to red cell development and function START HERE Function The primary function of the erythrocyte is the carriage of oxygen from the lungs to the tissues and CO 2 from the tissues to the lungs. The red cell also plays an important role in p. H buffering of the blood. To achieve these functions the red cell has several unique properties…. Lifespan: Because the fully developed red blood cell has no nucleus the cell cannot divide or repair itself. The lifespan is therefore relatively short (120 days). FINISH HERE Image: scanning electron microscope of red blood cell Haemoglobin content: unique to the red cell, it is this metaloprotein molecule which is pivotal in red cell development and Oxygen transport due to its affinity for O 2. Biconcave shape: increases surface area available for gaseous exchange. Flexibility: the red cell is 7. 8 m across and 1. 7 m thick and yet it is able to fit through capillaries of only 5 m diameter. This is in -part due to the flexible membrane and shedding of the nucleus. Strength: it has a strong but flexible membrane able to withstand the recurrent shear forces involved in the circulation of blood.

| Erythropoiesis 2. 2 Partners in Global Health Education Contents page 2. 1. The | Erythropoiesis 2. 2 Partners in Global Health Education Contents page 2. 1. The erythrocyte: an overview. 2. 2. Erythropoiesis An erythrocyte is a fully developed, mature red blood cell. The adult human makes approximately 1012 new erythrocytes every day by the process of erythropoiesis. This is a complex process that occurs within the bone marrow. Before an erythrocyte arrives fully functioning into the blood stream it must develop from a stem cell through an important number of stages. This module has simplified this process and highlights the key stages. Follow the numbered boxes through to the end before continuing to the next slide. 3. EPO continues to stimulate primitive erythroid cells (red blood cells) in the bone marrow and induce maturation. 2. EPO stimulates stem cells within the bone marrow which differentiate into erythroid precursors. START HERE 1: Erythropoietin (EPO), a growth factor, is synthesized primarily (90%) from peritubular cells of the kidneys (renal cortex). LO Macrophages surround and supply iron to these erythroprogenitor cells that become erythroblastic islands. Stem cells Bone marrow Erythroid precursors As with much human physiology, this system works via a feedback mechanism. Red blood cells in circulation erythropoietin Kidney FINISH HERE 4. There is no store of EPO. The production of erythropoietin is triggered by tissue hypoxia (oxygen tension sensed within the tubules of the kidney) and stops when oxygen levels are normal. • List the key components of erythropoiesis (red cell production)

| 2. 2. Erythropoiesis Contents page 2. 1. The erythrocyte: an overview. 2. 2. | 2. 2. Erythropoiesis Contents page 2. 1. The erythrocyte: an overview. 2. 2. Erythropoiesis Stem cells Hypoxia is the major stimulant for increased EPO production Key point! Partners in Global Health Education Chronic renal disease / bilateral nephrectomy will reduce or stop the production of EPO. It’s absence or reduction causes anaemia through reduced red cell production. Anaemia due to EPO deficiency will be normocytic in morphology; i. e. the red cell will be a normal shape and size but reduced in number. Bone marrow Erythroid precursors erythropoietin Kidney Key point! Stem cells Kidney In chronic states of anaemia the opposite may occur. The chronic hypoxic state increases production of EPO. This leads to an increase in the proportion of erythroblasts, expansion and eventually fatty deposition within the bone marrow. During childhood when the growth plates are still present, this expansion can lead to bone deformities such as frontal bossing. This is seen in chronic haemolysis such as thalassaemia. 2. 2

|Red cell precursors and the sequence of erythropoiesis 2. 2 Contents page 2. 1. |Red cell precursors and the sequence of erythropoiesis 2. 2 Contents page 2. 1. The erythrocyte: an overview. 2. 2. Erythropoiesis Key point! Partners in Global Health Education Reticulocytes are an important cell in haematology as they increase in number following a haemorrhage, haemolytic anaemia or from treatment of a haematinic deficiency. They provide an excellent measure of red cell production and the age of the red cell population. In normal blood there is usually about 1 reticulocyte : 100 erythrocytes. marrow Pronormoblast: This is the earliest and largest cell with a large nucleus and no haemoglobin. Normoblasts: these cells go through a large number of progressive changes. Fundamentally they reduce in cell size but increase the haemoglobin concentration in the cytoplasm. The nucleus proportionally decreases until it is extruded before the cell is released in to the blood. 3. 4. Reticulocytes: Considered the “teenagers” of the life cycle! This is the FINAL stage of development before full maturation. These cells are now anucleate and contain roughly 25% of the final haemoglobin total. They reside mostly in the marrow but in healthy individuals a small number can be found in the peripheral blood. They contain some cell organelles. blood Sequence: amplification and maturation of the erythrocyte 3. 5 Erythrocyte: after 1 week the mature erythrocyte emerges with no organelles and high haemoglobin content. Key point! Anaemia of chronic disease. In individuals living with a chronic disease (e. g. rheumatoid arthritis), a complex interaction of inflammatory cytokines interferes with the red cell lifecycle by impairing iron metabolism and inhibiting red cell precursors. The end result is a normocytic anaemia.

“Check the haematinics” this is a phrase used frequently on the hospital ward! |haematinics “Check the haematinics” this is a phrase used frequently on the hospital ward! |haematinics 2. 4 Partners in Global Health Education Contents page 2. 1. The erythrocyte: an overview. 2. 2. Erythropoiesis 2. 3. The red cell membrane 2. 4 Haematinics haemoglobin deficiency; Click here see all key causes. iron life cycle; Click here to see the key stages Click here to see a schematic diagram of vitamin B 12 absorption Erthropoiesis is also regulated by the availability of haematinics • So what exactly are the haematinics? These are the key micronutrients that must be present if a red blood cell and its haemogoblin are to develop in a normal fashion. • These major micronutrients, provided in a balanced diet, are iron, vitamin B 12 and folate • A deficiency in any one of these micronutrients can result in anaemia through impaired cell production within the bone marrow • Assessing haematinic status is key to the investigation of the cause of anaemia Iron: At the centre of the haem molecule is an atom of iron which binds oxygen in a reversible manner. Haemoglobin concentration in the developing red cell is a rate limiting step for erythropoiesis. In iron deficiency, red cells undergo more divisions than normal and, as a result, are smaller (microcytic) and have a reduced haemoglobin content (hypochromic). Iron deficiency is the leading cause of anaemia worldwide. Vitamin B 12 (cobalamin) and folate (pteroylglutamic acid): These are key building blocks for DNA synthesis and essential for cell mitosis. DNA synthesis is reduced in all cells that are deficient in either folate or vitamin B 12. The bone marrow is the factory for blood cell production. In haematinic deficiency, DNA replication is limited and hence the number of possible cell divisions is reduced leading to larger red cells being discharged into the blood i. e. less DNA, less divisions and larger cells. This leads to enlarged, misshapen cells or megaloblasts in the marrow and macrocytic red cells in the blood.

|haematinics in haemoglobin Partners in Global Health Education Iron • • • Click here |haematinics in haemoglobin Partners in Global Health Education Iron • • • Click here to return Iron deficiency Chronic inflammation Malignancy Chronic infections and inflammatory disorders cause chronic anaemia as a result of; 1. slightly shortened red blood cell life span 2. sequestration of iron in inflammatory cells called macrophages Both procedures result in a decrease in the amount of iron available to make red blood cells. Protoporphyrin Haem Globin Thalassaemia Haemoglobin 2. 4

|haematinics: the normal iron cycle 2. 4 Partners in Global Health Education An iron |haematinics: the normal iron cycle 2. 4 Partners in Global Health Education An iron deficiency profile. Serum Iron: Reduced Serum total ironbinding capacity (TIBC): Increased- the body works hard to bind free iron. Iron deficiency can be identified best by assessing the appearances of the red cells on a blood film. Iron indices in a blood sample are helpful to confirm a lack of iron. In order to interpret these indices, it is vital to understand how the body handles iron …. . Iron is a key constituent of haemoglobin (60 -70% of total body iron is stored here) and it’s availability is essential for erythropoiesis. In iron deficiency, there are more divisions of red cells during erythropoiesis than normal. As a result the red cells are smaller (microcytic) and have a reduced haemoglobin content (hypochromic). Soluble transferrin receptors, s. Tf. R are on the red cell surface. These can be measured and are increased in iron deficiency. Red blood cells In iron deficient states, bone marrow iron is reduced. Serum ferritin: Reduced-since iron stores are low Erythroid bone marrow (normoblasts) Some iron binds to apoferritin to form ferritin, a storage compound. Serum soluble transferrin receptors: Increased-since red cells attempt to absorb more iron. Liver 2. Iron is then attached to a protein, transferrin in the serum (plasma), where it is transported to the bone marrow for haemoglobin synthesis. Serum transferrin Fe Click here to return Duodenum Reticuloendothelial system; Spleen & macrophages 3. Dying red cells are recycled by macrophages in the spleen and iron is recycled into the plasma for further use. 1. Iron is absorbed from the small intestine in the ferrous state (Fe 2+; approx. 1 mg/day). START

|haematinics: vitamin B 12 Partners in Global Health Education 2. 4 There a number |haematinics: vitamin B 12 Partners in Global Health Education 2. 4 There a number of key steps in the absorption of Vitamin B 12. The two key locations are the stomach and the terminal ilium. Dietary vitamin B 12 binds with intrinsic factor (IF) in the stomach, a transport protein produced by gastric parietal cells. The B 12 -IF complex then travels through the small intestine and is absorbed by special receptors in the distal ileum. This pathway is important when considering possible causes of Vitamin B 12 deficiency. Oesophagus Causes of vitamin B 12 deficiency 1. Pernicious anaemia Stomach IF Intrinsic factor 2. Inadequate intake 3. Poor absorption Distal ileum Site of B 12 absorption Click here to return Vitamin B 12 ingested Vitamin B 12 deficiency can take up to two years to develop as the body has sufficient stores for this period. Pernicious anaemia: the leading cause of B 12 deficiency. Ig. G autoantibodies target gastric parietal cells and its product IF causing an atrophic gastritis. This results in reduced secretion of intrinsic factor and therefore reduced B 12 -IF complex for absorption in the distal ileum.

| the red cell structure 2. 1 2. 3 Partners in Global Health Education | the red cell structure 2. 1 2. 3 Partners in Global Health Education LO Contents page The red cell possesses an outer lipid bilayer membrane and a cytoskeleton that consists of a dense but collapsible lattice of specialised proteins. The lipid bilayer acts as a hydrophobic skin, whereas the proteins provide the strength, deformability and the biconcave shape of the cell. There are 4 red cells proteins of importance: spectrin Key point! 2. 1. The erythrocyte: an overview. 2. 2. Erythropoiesis 2. 3. The red cell membrane Link the components of red cell structure to red cell development and function actin Protein 4. 1 ankyrin Inherited disorders of erythrocyte membrane proteins result in a poorly deformable cell of normal size (normocyte) that cannot withstand the shear forces within the circulation. The membrane is then lost within the microcirculation creating spherical or elliptoid cells. These cells are then trapped and destroyed by macrophages within the spleen. This is one cause of haemolytic anaemia. Important examples are hereditary spherocytosis or elliptocytosis due to defects in the protein spectrin. Click next slide to see flow diagram

flow diagram: the process of spherocytosis in hereditary spherocytosis abnormal spectrin gene reduced spectrin flow diagram: the process of spherocytosis in hereditary spherocytosis abnormal spectrin gene reduced spectrin synthesis dysfunctional spectrin Spectrin malfunction within erythrocyte membrane Erythrocytes are exposed to high sheer forces within the microcirculation Cytoskeleton function impaired; cell loses ability to deform Spherocyte: a small, more rigid, spherical erythrocyte results Haemolysis; premature red cell death occurs causing anaemia Cells are either destroyed within the microcirculation or detected and removed by the reticuloendothelial system of the spleen

Key point: Oxidant stress! CLICK HERE H 2 O O- |red cell metabolism 2. Key point: Oxidant stress! CLICK HERE H 2 O O- |red cell metabolism 2. 5 Partners in Global Health Education Contents page Embden-Meyerhof glycolytic pathway 2. 1. The erythrocyte: an overview. 2. 2. Erythropoiesis 2. 3. The red cell structure 2. 3. 1. Cell membrane 2. 3. 2. DNA synthesis 2. 4. Red cell metabolism 2 GSH GSSG Hexose shunt. Glucose NAPD NADPH+H+ Glucose- 6 -PG Glucose-6 -phosphate dehydrogenase ADP monophosphate Red cells require a mechanism to detoxify the waste products (accumulated oxidised substrates) of the cell. This shunt provides this solution. It also provides 10% of glycolysis. However this metabolic pathway is also susceptible to pathology. ATP Key point! This is a sequence of biochemical reactions in which glucose is metabolised to lactate with the generation of 2 ATP molecules (providing energy for the cell). Fructose-6 -P Ribulose 5 -P ADP Pyruvate kinase ATP Hexose monophosphate shunt The glycolytic pathway With no cell organelles and no mitochondria the fully developed erythrocyte relies on this aerobic pathway to gain energy (ATP) for the cell. Lactate Pyruvate kinase deficiency: In rare circumstances there are defects within the critical glycolytic enzymes. 95% of these defects are associated with pyruvate kinase, a key enzyme within this pathway. The result is insufficient ATP production for cell life and therefore premature death (haemolysis). Glucose-6 -phosphate dehydrogenase (G 6 PD) deficiency is an X-linked disorder that is relatively common. The G 6 PD enzyme is a ratelimiting step within this pathway. If deficient, haemolysis occurs when the cell is placed under oxidative stress (e. g. by oxidative drugs, fava beans, infections) creating a potentially severe anaemia. Click OXIDATIVE STRESS for more info.

Red cell functioning adequately under normal conditions Infection Drugs: e. g. antimalarials Fava beans Red cell functioning adequately under normal conditions Infection Drugs: e. g. antimalarials Fava beans Oxidant stress! Red cell cannot produce enough NADPH via the HMP shunt H 2 O O- Embden-Meyerhof glycolytic pathway 2 GSH GSSG Glucose NAPD Inadequate amounts of GSH to combat oxidant stress NADPH+H+ Glucose- 6 -P Oxidant damage to cell membrane 6 -PG Glucose-6 -phosphate dehydrogenase ADP ATP Fructose-6 -P Reduced red cell survival ADP Pyruvate kinase ATP Haemolytic anaemia! Ribulose 5 -P Hexose monophosphate shunt Lactate RETURN

| haemoglobin and O 2 transport 2. 6 Partners in Global Health Education Contents | haemoglobin and O 2 transport 2. 6 Partners in Global Health Education Contents page 2. 1. The erythrocyte: an overview. 2. 2. Erythropoiesis 2. 3. The red cell structure 2. 3. 1. Cell membrane 2. 3. 2. DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin and O 2 transport A key function of a red cell is to carry and deliver oxygen to the tissues and return CO 2 from the tissues to the lungs. As a result the red cell has developed a specialised molecule called haemoglobin (Hb). It is important to gain a basic understanding of its synthesis, functioning and metabolism as errors in these processes lead to a number of anaemic states. It’s waste products are also released when a red cell is destroyed prematurely and are therefore a valuable indicator of haemolysis. Oxygen (O 2) 2, 3 -DPG GLOBIN CHAIN A normal adult haemoglobin (Hb A) molecule consists of 4 polypeptide (globin) chains: 1 2. oxyhaemoglobin For more information on foetal haemoglobin click here Haemoglobinopathies Key point! HAEM MOLECULE Each individual globin combines with one haem molecule. This molecule contains iron and binds oxygen in a reversible manner. A mature red cell (an erythrocyte) contains approximately 640 million haemoglobin molecules. deoxyhaemoglobin A molecule called 2, 3 – Diphosphoglycerate (2, 3 -DPG) sits between the chains and when increased helps to offload oxygen to the tissues. Thalassaemia: reduced rate of synthesis of either or globin chains. Within this group of inherited conditions there may be both ineffective erythropoiesis and haemolysis resulting in a microcytic anaemia sometime also with hypochromia. Sickle cell disease: an inheritance of two abnormal -globin genes (Hb. SS). The abnormality consists of a point mutation in the globin gene. This results in Hb insolubility in it’s deoxygenated state with crystallization within the red cell causing sickling of the cell and vascular occlusion. A common problem that affects primarily the Afro-Caribbean populations.

| haemoglobin in foetal haemoglobin Partners in Global Health Education RETURN 2, 3 -DPG | haemoglobin in foetal haemoglobin Partners in Global Health Education RETURN 2, 3 -DPG oxyhaemoglobin deoxyhaemoglobin Oxygen requirements differ at different stages of development. The foetus displays a different type of haemoglobin to an adult. Foetal Hb (Hb F) and Hb. A 2 still contain two chains but instead of chains have two and chains respectively. Hb. F has a higher affinity for oxygen compared to maternal Hb. A. This is impart due to less binding of 2, 3 – DPG. The change from Hb. F to Hb. A occurs at around 3 -6 months of age. 2. 6

|haemoglobin and the oxygen dissociation curve 2. 6 Partners in Global Health Education The |haemoglobin and the oxygen dissociation curve 2. 6 Partners in Global Health Education The sigmoid curve: this occurs because as O 2 is unloaded the beta chains are pulled apart and 2, 3 -DPG enters the space. This reduces the haemoglobin molecule’s affinity for O 2. A shift to the left indicates an increased affinity for O 2. This makes it easier for Hb to bind to O 2, in the lungs and conversely more difficult for Hb to release O 2 in the tissues. . This occurs when there is a rise in p. H (alkalosis), low CO 2 levels and with Hb. F. The shape of this classic sigmoid curve will be dictated by the number of 2, 3 -DPG metabolites and CO 2 and H+ ion concentration in the red blood cell. • CO 2 • p. H • 2, 3 -DPG • p. H • 50 CO 2 • 50 2. 1. The erythrocyte: an overview. 2. 2. Erythropoiesis 2. 3. The red cell structure 2. 3. 1. Cell membrane 2. 3. 2. DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin and O 2 transport Hb saturation (100%) Contents page 2, 3 -DPG PO 2 (mm Hg) A shift to the right indicates a decreased affinity for O 2. This occurs when there are raised concentrations of 2, 3 -DPG, H+ ions (acidosis) or CO 2 within the red blood cell. This results in greater release of O 2 to the tissues.

|ageing and death Partners in Global Health Education Contents 1. 1 Introduction 1. 2 |ageing and death Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. 2. 7 A red cell shows signs of deterioration and reduced glycolytic rate from around 100 days of the cell’s cycle. Without any DNA or ribosomes, the cell is unable to generate new enzymes (like pyruvate kinase or G 6 PD that we have been introduced to). These ageing cells are eventually identified by the reticuloendothelial system. This is a system of white blood cells that are present within the spleen, liver and lymph nodes whose main role is to phagocytose damaged or ageing cells. The tired cells are removed and recycled by macrophages in the spleen and liver. Haemolysis: any process that shortens the red blood cell lifespan to less than 120 days. Haemolytic anaemias; This is an important group of anaemias. There are many important causes of premature red cell death resulting in anaemia and the increased products of haemolysis within the blood circulation and beyond. Normally red cell degradation and recycling is managed by the reticuloendothelial system on a daily basis without any problems. When a pathological process causes premature lysis of the red cells, the ability of the body to clear the increased number of waste products may be overloaded. The next slide demonstrates the breakdown of the products of the red blood cell. This is an important pathway to consider whenever encountering a haemolytic anaemia.

Flow diagram: products of red cell destruction. 1. LDH is a nucleic enzyme which Flow diagram: products of red cell destruction. 1. LDH is a nucleic enzyme which is released on red cell destruction. The concentration of LDH is measurable from a blood sample and provides an indicator of haemolysis. Investigating haemolysis Red blood cell 1. 2. 3. 2. Reticulocyte count will be elevated in response to the feedback loop during anaemia. The bone marrow increases red cell production. Reticulocytes are larger than mature red blood cells causing a rise in mean cell volume ( MCV). 3. LDH Haemoglobin Iron F Attaches to transferrin Stercobilinogen is excreted in the faeces Some stercobilin and stercobilogen are reabsorbed from the intestine and excreted in the urine as urobilin and urobilinogen. Raised levels in the urine may indicate haemolysis. Globin Haem Is metabolized to amino acids Unconjugated bilirubin Liver Conjugated in the liver to the diglucuronide, watersoluble form that is secreted in the bile and then converted to stercobilinogen. Lactic acid dehydrogenase (LDH) Reticulocyte count Bilirubin The protoporphyrin of haem is metabolised to the yellow pigment bilirubin, which is bound to albumin in the plasma. Haptoglobins these proteins bind to any free haemoglobin. These proteins can become saturated in a haemolytic anaemia. Haemoglobin can then pass into the urine causing haemoglobinuria or converted to haemosiderinuria. 3. Bilirubin Heamolysis results in excess bilirubin causing jaundice (typically lemon yellow colour ) and pigment gallstones.

Well done! You have come to the end of the first section. We suggest Well done! You have come to the end of the first section. We suggest that you answer Quiz 1 to assess your learning so far. Please remember to write your answers on the mark sheet before looking at the correct answers! true / false A normal red blood cell has an average lifespan of 80 days Erythropoietin is reduced in chronic hypoxia Iron is transported in the blood bound to apoferritin. High affinity haemoglobin would shift the oxygen dissociation curve to the left, thus limiting oxygen delivery to the tissues? Vitamin B 12 is absorbed in the jejunum. Folate and vitamin B 12 are key building blocks of haemoglobin. Chronic anaemia and malignancy prevent haem production. A deficiency in folate causes a macrocytic, megaloblastic anaemia. Adult haemoglobin is composed of 2 alpha and 2 beta globin chains. Increased reticulocytes is a key feature of a haemolysis. click to check answers

true / false A red blood cell has an average lifespan of 80 days true / false A red blood cell has an average lifespan of 80 days False! A red blood cell has an average lifespan of 120 days. This is short compared to other blood cells due to the cell having no nucleus or organelles and is thus unable to replace key enzymes and maintain cell function. Erythropoietin (EPO) production is reduced in chronic hypoxic states False! In chronic hypoxic states there is an increased production of EPO. This leads to an increase in the proportion of erythroblasts, expansion and eventually fatty deposition within the bone marrow. Iron is transported in the blood bound to apoferritin. True! JAK 2 is a receptor for erythropoietin. A point mutation (tyrosine kinase) in this receptor is implicated in the oncogenisis of several myeloproliferative neoplasm. (90% of Polycythemia vera patients). A low p. H, a high CO 2 concentration in the blood and a high number of 2, 3 -DPG would shift the oxygen dissociation curve to the left False! It would shift to the right. All these factors would cause haemoglobin (Hb) to have a reduced affinity for O 2 and increase O 2 release fom Hb. Vitamin B 12 is absorbed in the jejunum False! Vitamin B 12 binds to intrinsic factor in the stomach, travels through the small bowel and the complex is absorbed in the distal ileum. Folate and vitamin B 12 are key building blocks of haemoglobin False! Vitamin B 12 and folate are key building blocks of DNA. Chronic anaemia and malignancy prevent haem production True! Chronic anaemia and malignancy block iron from being incorporated into the haem molecule. A deficiency in folate causes a macrocytic megaloblastic anaemia True! Both folate and vitamin B 12 are key micronutrients for DNA synthesis. Deficiencies cause a macrocytic megaloblastic anaemia. Adult haemoglobin is composed of 2 alpha and 2 beta chains True! The normal adult Hb contain 4 globin chains (often notated as α 2β 2). Increased reticulocytes is a key feature of a haemolytic anaemia True! The cells will be elevated in response to our feedback loop during anaemia. With excessive destruction of red cells, the bone marrow increases production.

Welcome to section 2! | defining anaemia Partners in Global Health Education Contents 1. Welcome to section 2! | defining anaemia Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. What exactly is anaemia? Anaemia is defined as haemoglobin concentration less than the normal reference range. Reference ranges differ according to age, sex and altitude. However, in general, anaemia is defined as Hb concentration For adult males < 13. 5 g/dl For adult women < 11. 5 g/dl As well as reduced [Hb], anaemia is usually accompanied by a reduction in the number of red cells (red cell count) and packed cell volume (PCV). However this is not always the case. Red cell count and PCV may be normal in some patients with lower than normal haemoglobin levels (and hence anaemic). The total circulating haemoglobin concentration is therefore determined by…. • the circulating plasma volume • the total circulating haemoglobin mass. The following circumstances should therefore be taken in to consideration…… | Acute significant blood loss | | Pregnancy or splenomegaly | Following acute blood loss it may take up to a day for the plasma volume to be replaced anaemia to present. Therefore, clinical features of shock and reduced blood volume may occur before a fall in haemoglobin concentration. These can produce an increase in plasma volume reducing the apparent haemoglobin concentration even though circulating haemoglobin levels are normal. | Dehydration | Reduced plasma volume may mask anaemia.

| prevalence Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use | prevalence Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification Anaemia is thought to affect 1. 62 billion people on a daily basis (WHO); this is 24% of the world’s population. Anaemia affects both developing and developed nations. However the main causes vary according to geographical region and from country to country. The WHO (World Health Organisation) has devised the most comprehensive global data bank on anaemia. Women (both pregnant and non-pregnant) and children suffer most from the condition. Developing nations A complex interaction of socio-economic conditions, nutritional deficiencies and coexisting disease (malaria, HIV) are key contributors to anaemia in developing nations (particularly within the tropics). Africa has the highest prevalence of anaemia. It occurs in 67. 6% of preschool children, 57. 1% of pregnant women and 47. 5% of non-pregnant women. 5. 0. Blood film: a basic interpretation. Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. Click here to see WHO world map of the prevalence anaemia in non-pregnant women Click here to see WHO world map of the prevalence of anaemia in pre-school aged children Click here to see WHO world map of the prevalence of anaemia in pregnant women.

|clinical features of anaemia Partners in Global Health Education Contents 1. 1 Introduction 1. |clinical features of anaemia Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification Tissue hypoxia is the end result of the blood’s reduced oxygen carrying capacity. The compensatory mechanisms in response to hypoxia cause the clinical manifestations to develop. An anaemic individual will have the following two key compensatory mechanisms; 1. The cardiovascular system Cardiac compensation is the major adaptation. Both stroke volume and heart rate increase mobilizing greater volumes of oxygenated blood to the tissues. This can present with palpitations, tachycardia and heart murmurs. Dyspnoea which occurs in severely anaemic patients may be a sign of cardio-respiratory failure. 5. 0. Blood film: a basic interpretation. 2. The skin Quiz 3. A common sign is generalised pallor due primarily to vasoconstriction with redistribution of blood to key areas (brain, myocardium). 6. 0. Glossary 7. 0. References please click on contents to repeat a section.

|clinical features of anaemia Partners in Global Health Education In general, a healthy individual |clinical features of anaemia Partners in Global Health Education In general, a healthy individual may compensate well for anaemia and remain mostly asymptomatic. However many of the following symptoms and signs are observable when the following occurs; 1. A rapid onset: Anaemia that develops over a short period of time will cause more symptoms than more slowly progressing anaemia because there is less time for the O 2 dissociation curve of haemoglobin and the cardiovascular system to adapt. 2. Severity: Mild anaemia (Hb 9. 0 -11. 0 g/d. L) often produces no symptoms or signs. In a young person, severe anaemia may not even present clinically. However this is notoriously unreliable and some patients with severe anaemia may compensate well while others with mild anaemia may present with severe symptoms. 3. Age: The elderly are less tolerable of anaemia mainly as a result of an inability to increase cardiac output. 4. Co-existent disease - often cardiac or pulmonary disease.

| clinical features of anaemia Partners in Global Health Education General symptoms and signs | clinical features of anaemia Partners in Global Health Education General symptoms and signs Click images for explanation of signs! Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. General Symptoms Headaches Shortness of breath: particularly on exercise. Palpitations Confusion and symptoms of cardiac failure in elderly Weakness and lethargy General Signs Some specific signs

| clinical features of anaemia Partners in Global Health Education This is a list | clinical features of anaemia Partners in Global Health Education This is a list of general symptoms and signs; we will cover more specific clinical features as we progress through the module. Signs: Pallor of mucous membranes (most common sign). This is a general sign. Beware: pallor is quite subjective and NOT a reliable clinical sign. Be careful not to exclude anaemia on the basis of absence of pallor alone RETURN

| clinical features of anaemia Partners in Global Health Education This is a list | clinical features of anaemia Partners in Global Health Education This is a list of general symptoms and signs; we will cover more specific clinical features as we progress through the module. Signs: Nail bed; demonstrating koilonychia (spoon-shaped nails). This is specific to iron deficiency. RETURN

| clinical features of anaemia Partners in Global Health Education This is a list | clinical features of anaemia Partners in Global Health Education This is a list of general symptoms and signs; we will cover more specific clinical features as we progress through the module. Signs Atrophic glossitis; red large swollen tongue. This is seen in both vitamin B 12 and folate deficiency. RETURN

| clinical features of anaemia Partners in Global Health Education This is a list | clinical features of anaemia Partners in Global Health Education This is a list of general symptoms and signs; we will cover more specific clinical features as we progress through the module. Signs Angular stomitis; fissuring at corners of mouth. This is seen in both vitamin B 12 and folate deficiency. RETURN

| clinical features of anaemia Partners in Global Health Education This is a list | clinical features of anaemia Partners in Global Health Education This is a list of general symptoms and signs; we will cover more specific clinical features as we progress through the module. Signs Dysphagia: pharyngeal web (Paterson-Kelly syndrome). This occurs in iron deficiency. RETURN

| clinical features of anaemia Partners in Global Health Education This is a list | clinical features of anaemia Partners in Global Health Education This is a list of general symptoms and signs; we will cover more specific clinical features as we progress through the module. Signs Peripheral oedema. A general sign. RETURN

| clinical features of anaemia Partners in Global Health Education This is a list | clinical features of anaemia Partners in Global Health Education This is a list of general symptoms and signs; we will cover more specific clinical features as we progress through the module. Signs High flow murmur, bounding pulse and/or tachycardia: All features of a compensatory hyperdynamic circulation. These are general signs! RETURN

Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. Well done! You have come to the end of the second section. We suggest that you answer Quiz 2 to assess your learning so far. Please remember to write your answers on the mark sheet before looking at the correct answers! true / false An adult male with a haemoglobin concentraion (Hb) < 11. 5 g/dl is anaemic. Within the developing world iron deficiency is the single most common cause of anaemia. The respiratory system is the main physiological compensator in anaemia. Koilonychia, glossitis and angular stomatitis are all general signs of anaemia. Some key signs associated with iron deficient anaemia are koilonychia and glosso-pharyngeal webbing. click to check answers

An adult male will be anaemic if they have a haemoglobin of < 11. An adult male will be anaemic if they have a haemoglobin of < 11. 5 g/dl on a full blood count. False! An adult male is anaemic if [Hb] is < 13. 5 g/dl. An adult female will be considered anaemic if [Hb] is < 11. 5 g/dl. Within the developing world iron deficient anaemia is the single greatest cause of anaemia True! The respiratory system is the main physiological compensator in anaemia. False! The cardiovascular system is the major adaptor. Both stroke volume and heart rate increase in an attempt to mobilize greater volumes of oxygenated blood to the tissues. Koilonychia, glossitis, angular stomatitis are all general signs of anaemia. False! Koilonychia is sign of iron deficiency. Glossitis and angular stomatits are a sign of vitamin B 12 and folate deficiency. Some key signs associated with iron deficient anaemia are koilonychia and glosso-pharyngeal webbing. True! Click here to continue module

Welcome to section 3!|classification of anaemia Partners in Global Health Education Contents 1. 1 Welcome to section 3!|classification of anaemia Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes Essentially there are two ways to classify anaemia, by red cell size (morphological classification) or by cause (aetiological classification). Both have their purpose and both need to be fully understood to gain a rounded understanding of anaemia. 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. Morphological classification Aetiological classification This is a practical and clinically useful classification for establishing a differential diagnosis of anaemia. This classification is based on cause and illuminates the pathological process underlying anaemia. It is done by examining red cells in a blood stained smear and by automated measurements of red cell indices *Key point: In order to understand this classification it is essential to understand red cell indices reported in the full blood count (FBC). There is great reward in understanding these indices as they enable one to identify some of the underlying processes leading to anaemia and, importantly, help to formulate a differential diagnoses.

|red cell indices Partners in Global Health Education These are the key measures of |red cell indices Partners in Global Health Education These are the key measures of red cell indices. They relate to the haemoglobin content and size of the red blood cells. MCV: Mean cell volume; the average volume of the red cells. MCV does not provide an indicator of either haemoglobin concentration within the cells, or the number of red cells. It enables us to categorize red cells into the following; Microcytic (MCV <80 f. L) Normocytic (MCV of 80 -99 f. L) Macrocytic (MCV > 99 f. L) a small red blood cell. a normal size red blood cell. a large red blood cell. This is a key index that is used daily in medical settings across the world to categorize the type of anaemia present. It is reliable in most cases; one exception is when two pathologies occur at the same time such as vitamin B 12 and Iron deficiency. MCV reports average cell volume; further assessment of cell size and how this varies within an individual can be ascertained from the red cell distribution width (RDW; see below). MCH: Mean corpuscular haemoglobin ( normal range 26. 7 -32. 5 pg/cell): the average haemoglobin content of red blood cells. Cells with a reduced haemoglobin content are termed hypochromic and those with a normal level are termed normochromic (see below). RDW: Red cell distribution width; an index of the variation in sizes of the red cell population within an indiviual. This will be raised if two red cell populations are present. Occasionally useful if there is doubt about multiple causes of anaemia. A common cause for an increased RDW is the presence of reticulocytes. Normochromic implies normal staining of the cells in a thin blood film. The central area of pallor is normally about 1/3 of the cell diameter Hypochromic indicates reduced staining with increase in the central area of pallor

|interpretation of red cell indices Partners in Global Health Education Microcytosis & hypochromia Normocytosis |interpretation of red cell indices Partners in Global Health Education Microcytosis & hypochromia Normocytosis & normochromia Macrocytosis & megaloblastosis Microcytic abnormally small red blood cells. Microcytic anemia is not caused by reduced DNA synthesis. It is not fully understood but is believed to be due reduced erythroid regeneration. Normocytic normochromic anaemia develops when there is a decrease in the production of normal red blood cells. Macrocytic megaloblastic red blood cells have an unusual misshapen appearance, which is due to defective synthesis of DNA. This in turn leads to delayed maturation of the nucleus compared to that of the cytoplasm and the cells have a reduced survival time. Hypochromic hypochromic cells due to a failure of haemoglobin synthesis. Normocytic Many processes causing anaemia do not effect the cell size or haemoglobin concentration within cells. In clinical practice megaloblastic anaemia is almost always caused by a deficiency of vitamin B 12 or folate which are key building blocks in DNA synthesis. Pathologies; • Iron deficiency; iron is an essential building block of haem. • Failure of globin synthesis; this occurs in the thalassemia's. • Crystallization of haemoglobin: sickle cell disease and haemoglobin C. Pathologies; • anemia of chronic disease (some) • aplastic anemia • Haemolysis: a increased destruction (some) • Hemolysis ; or loss of red blood • pregnancy/fluid overload: an inbalance or an increase in plasma volume compared to red cell production Macrocytosis: The exact cause of the pathological mechanisms behind these large cells is not fully understood. . It is thought to be linked to lipid deposition on the red cell membrane. Alcohol is the most frequent cause of a raised MCV! Alcohol | Liver disease | hypothyroidism | Hypoxia | cytotoxic drugs | pregnancy |

| morphological classification of anaemia Partners in Global Health Education Contents 1. 1 Introduction | morphological classification of anaemia Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes Anaemia type 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Red cell indices Microcytic hypochromic MCV < 80 fl MCH < 27 pg/L Normocytic normochromic normal Macrocytic Megaloblastic MCV > 98 fl Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. Common examples Iron deficiency Haemolysis Thalassaemia Chronic disease Sideroblastic Marrow infiltration Folate deficiency B 12 deficiency

|aetiological classification of anaemia Partners in Global Health Education Contents 1. 1 Introduction 1. |aetiological classification of anaemia Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death This classification is based on cause and illuminates the pathogenic process leading to anaemia. You can look at anaemia from a production, destruction or pooling point of view. Reduced Production Insufficient production: If you consider the bone marrow to be the factory it must have enough raw material (Iron, vitamin B 12 and folate) to make new blood cells. These raw material are called haematinics. If there is not enough of the raw material (a deficiency of one or more of the haematinics), then there is insufficient production. Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification Inefficient production (erythropoiesis): some problem with maturation of the erythroid in the marrow. Occurs in bone marrow infiltration (malignancy/leukaemia), aplastic anaemia or in the macrocytic megaloblastic anaemia. Destruction Reduced Cell lifespan This is either due to loss of red blood cells in a haemorrhage (a bleed) or the excessive destruction of red blood cells in haemolysis. Haemolysis is an important cause of red cell destruction and anaemia. 5. 0. Blood film: a basic interpretation. Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. Pooling: Hypersplenism.

|classification of anaemia based on pathology Partners in Global Health Education Contents anaemia 1. |classification of anaemia based on pathology Partners in Global Health Education Contents anaemia 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. Increased destruction of red cells (haemolytic anaemia Acquired / outside cell Loss of red cells due to bleeding Inherited / inside the cell immune Nonimmune • Autoimmune warm • Autoimmune cold • Adverse drug reaction • Haemolytic disease of the newborn • Malaria • Burns • Mechanical heart valve • Hypersplenism • PNH Dilution of red cells by increased plasma volume (e. g. hypersplenism) Reduced bone marrow erythroid cells • aplastic anaemia • Leukaemia or malignancy Abnormal red cell membrane • Sperocytes • Elliptocytes Failure of production of red cells by the bone marrow Nutritional (haematinic) deficiency • Iron • vitamin B 12 • folate Abnormal haemoglobin Thalassaemia • Sickle cell anaemia Ineffective red cell formation • Chronic inflam. • Thalassaemia • renal disease Abnormal red cell metabolism • Pyruvate kinase deficiency • G 6 PD deficiency

|blood film: a basic interpretation Partners in Global Health Education Contents 1. 1 Introduction |blood film: a basic interpretation Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification A blood film is an essential investigation in classifying and diagnosing the cause of anaemia. A blood sample (anticoagulated venous sample) is smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells and platelets. Red blood cells appear paler in the centre of the cell due to their biconcave shape. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Please click on each cell to see the blood film and it’s causes. Normal red cell Microcytic hypochromic Elliptocyte Fragments Stomatocyte Sickle cell Please click here to compare blood films Macrocyte Tear drop poikilocyte Target cell Pencil cell 5. 0. Blood film: a basic interpretation. Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. Spherocyte Acanthocyte Basket case Malarial parasite

Normal red blood film Elliptocyte Stomatocyte Microcytic hypochromic Fragments Sickle cell Macrocytic megaloblastic Fragments Normal red blood film Elliptocyte Stomatocyte Microcytic hypochromic Fragments Sickle cell Macrocytic megaloblastic Fragments Target cells ‘Pencil’ cells Spherocyte Bite cells Malaria Acanthocyte

|anaemia essential bites Partners in Global Health Education Contents 1. 1 Introduction 1. 2 |anaemia essential bites Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes Microcytic anaemia iron deficieny 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Macrocytic anaemia Vitamin B 12 & Folate deficiency Epi: cause of a affecting around the most common naemia worldwide 500 million daily. Aet: anaemia, malabsorpion, gastrectomy pernicious post total Ix. platelets. IF levels B 12 MCV antibodies, folate Si/Sy: deterioration, Irritability, Painless jaundice, Feeling of pins extremities. ataxic Txt of 1 mg of Gradual Loss of memory, Loss of sensation , and needles in (Vitamin B 12). There is Intramuscular (IM) hydroxycobalamin no oral form. Haemolytic anaemias G 6 PD deficieny Epi: Aet: consumption dietary folate antagonist methotrexate). increased (pregnancy), deficiency, (drugs eg; Ix. transferrin Endoscopy/ suspected blood folate MCV saturation. colonoscopy if loss. health haemoglobin breakdown G 6 PD is a key enzyme in the hexose monophosphate shunt. An important funtion of the shunt is maintain a by removing oxidant stresses. Wihtout the enzyme, Hb resulting in haemolytic aneamia. Aet: X-linked Si/Sy: deterioration, of memory, jaundice, Loss of Feeling of pins and extremities. ataxic Txt (IM) of 1 mg of Gradual Irritability, Loss Painless sensation , needles in Ix. Direct assay during haemolysis Si/Sy: Koilonychia, sore tongue, angular stomatitis, Plummer. Vinson syndrome (dysphagia due to painless gastritis. n (Vitamin B 12). There is no oral form. Path Intramuscular hydroxycobalami oesophageal web), Rx Tx. Avoid precipitants of oxidative stress; drugs (anti-malarials, analgesics), fava beans. Blood transfusion if required. Hereditary spherocytosis; Β-Thalassaemia R. C. I. : a microcytic hypochromic anaemia Epi: Common in protected from One of the most common autosomal inherited disorders. Mediterranean, Africa and middle east. Gene carriers are p. falciprum malaria. Path: Reduced beta globin (of haemoglobin) production. Ineffective erythropoiesis and haemolysis IX. blood film, Hb electropheresis Si/Sy. Heterozygotes: often asymptomatic, mild anaemia, low MCV. Homozygote: severe anaemia, failure to thrive in first 6 splenomegaly, bone hypertrophy (secondary to haemopoisis). Si/Sy: For major Thalassaemia treat with repeated blood Txt Epi: the most common cause of anaemia worldwide affecting around 500 million daily. Aet: The most common cause of iron deficient anaemia is BLOOD loss reduced intake (diet) Increased demand (pregnancy) Malabsorption (coeliac, gastrectomy) Ix. FBC, ferritin, serum iron, TIBC, transferrin saturation. Endoscopy/colonoscopy if suspected blood Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. months of life, extramedullary Tx. loss. Koilonychia, sore tongue, angular stomatitis, Plummer. Vinson syndrome (dysphagia due to oesophageal web), transfusion and iron chelation. painless gastritis. Treat underlying cause, give ferrous sulphate until Hb and MCV normal. Aquired Haemolytic anaemias; Sickle cell disease R. C. I. : a microcytic hypochromic anaemia Aet: haemoglobin primarily affect those of against malaria. A group of autosomal recessive genetic disorders due to a chain mutation. Part of the haemoglobinopathies that African origin (sickel cell trait can afford some protection Path: transformation in a of shape. The cause hypoxia, Abnormal haemoglobin (Hb. S) undergo a sickling deoxygenated state and a permenant conformational change red cell looses its ability to deform becoming rigid. This can occlusion of small vessels. These crises are precipitated by dehydration, infection and the cold. IX. Electropherisis, haemoglobin solubility test. Si/Sy: gallstones. Txt Bone pain, if chronic haemolysis- jaundice and pigment Si/Sy: Supportive; analgesia, fluids and antibiotics if required. Txt Epi: the most common cause of anaemia worldwide affecting around 500 million daily. Aet: The most common cause of iron deficient anaemia is BLOOD loss reduced intake (diet) Increased demand (pregnancy) Malabsorption (coeliac, gastrectomy) Ix. FBC, ferritin, serum iron, TIBC, transferrin saturation. Endoscopy/colonoscopy if suspected blood loss. Koilonychia, sore tongue, angular stomatitis, Plummer. Vinson syndrome (dysphagia due to oesophageal web), painless gastritis. Treat underlying cause, give ferrous sulphate until Hb and MCV normal. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. KEY Epidemiology Ix. Investigations R. C. I. Red Cell Indices Si/Sy. Signs and Symptoms Aetiology Pathology Tx. Treatment

Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes Well done! You have come to the end of the third and final section. 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. We suggest that you answer Quiz 3 to assess your learning. Please remember to write your answers on the mark sheet before looking at the correct answers! true / false Microcytosis is MCV < 90 f. L The appearance of a hypochromic red blood cell is caused by reduced DNA synthesis In vitamin B 12 deficiency you would expect the MCV to be >99 f. L Both sickle cell anaemia and thalassaemia have abnormal haemoglobin A macrocytic blood film may indicate excess alcohol consumption or liver disease click to check answers

Microcytosis is MCV < 90 f. L False! Microcytosis is MCV < 80 f. Microcytosis is MCV < 90 f. L False! Microcytosis is MCV < 80 f. L. The appearance of a hypochromic red blood cell is caused by reduced DNA synthesis False! A hypochromic film is due to reduced haemoglobin content within red blood cells. In vitamin B 12 deficiency you would expect the MCV to be >99 f. L True Both sickle cell anaemia and thalassaemia have abnormal haemoglobin True! A macrocytic blood film may indicate excess alcohol consumption or liver disease True! Click here to return to beginning of module

Blood film RBC morphology: normocytic, normochromic. |blood film: a basic interpretation Partners in Global Blood film RBC morphology: normocytic, normochromic. |blood film: a basic interpretation Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Definitions Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key Normocytic: A cell with an MCV within the normal variables to observe. range Normochromic: concentration of anaemia is within the normal range Please click on each cell to see the blood film, causes and explanation. The biconcave red cell when stained shows a classical central area of pallor on a blood film. Normal red cell Microcytic hypochromic Macrocyte Target cell return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Pencil cell 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz Basket case Spherocyte Acanthocyte Malarial parasite

Blood film RBC morphology: |blood film: a basic Microcytic hypochromic. Partners in Global Health Blood film RBC morphology: |blood film: a basic Microcytic hypochromic. Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a Explanation normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key Red cells are smaller and lighter than normal and variables to observe. displaying a typical ‘area of central pallor’. Please click on each cell to see the blood film, causes and explanation. Cause Iron deficient anaemia Normal red cell Thalassaemia Microcytic Macrocyte hypochromic Target cell return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Pencil cell 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz Basket case Spherocyte Acanthocyte Malarial parasite

Blood film RBC morphology: macrocytic , megaloblastic (More oval) |blood film: a basic interpretation Blood film RBC morphology: macrocytic , megaloblastic (More oval) |blood film: a basic interpretation Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Cause Macrocytic megaloblastic: Please click. Macrocytic: see the blood film, causes and explanation. on each cell to Liver disease Alcoholism Normal red cell Vitamin B 12 Folate Microcytic hypochromic Macrocyte Target cell return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Pencil cell 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz Basket case Spherocyte Acanthocyte Malarial parasite

Blood film |blood film: a RBC morphology: target cell Partners in Global Health Education Blood film |blood film: a RBC morphology: target cell Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood Extra: it is also possible to see one neutrophilbe smeared onto a glass slide, sample (anticoagulated venous sample) will and two platelets. fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the Cause cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Target cells are found in peripheral blood films in a number of Please click on each cell to see the blood film, causes and explanation. conditions. Normal red cell 1. Liver disease (obstructive jaundice). 2. Microcytic Thalassaemia major. Macrocyte Target cell 3. Sickle cell anaemia. hypochromic return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Pencil cell 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz Basket case Spherocyte Acanthocyte Malarial parasite

Blood film |blood film: a basic interpretation RBC morphology: basket/blister cell. Partners in Global Blood film |blood film: a basic interpretation RBC morphology: basket/blister cell. Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Explanation: Please click on each cell to see the blood film, causes and explanation. Oxidant damage Normal red cell Cause: Microcytic hypochromic Macrocyte Target cell G 6 PD deficiency return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Pencil cell 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz Basket case Spherocyte Acanthocyte Malarial parasite

Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. RBC|blood film: a basic interpretation morphology: basket cell. RBC morphology: Elliptocyte. Blood film shows characteristic A blood film can provide key elliptical (elongated) red anaemia. It is therefore is an essential part of all evidence in diagnosing cells. investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Explanation Causes Please click on each cell to see the blood film, causes and explanation. Normal red cell Oxidant damage • Hereditary elliptocytosis: due to a defective cell membrane protein Basket case Microcytic (Spectrin, band 4. 1). Macrocyte Target cell G 6 PD deficiency hypochromic return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Pencil cell 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz Spherocyte Acanthocyte Malarial parasite

Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. Blood film RBC|blood film: a basic morphology: basket cell. RBC morphology: Elliptocyte. morphology: Fragments interpretation A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Causes Cause Explanation Please click on each cell to see the blood film, causes and explanation. • Disseminated Intravascular Coagulation (DIC) Oxidant damage • Hereditary elliptocytosis Microangiopathy • • TTP G 6 PD deficiency Normal red cell Microcytic Macrocyte Target cell hypochromic • Burns • Cardiac valves return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Pencil cell 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz Basket case Spherocyte Acanthocyte Malarial parasite

Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. RBC|blood film: a basic morphology: basket cell. RBC morphology: Tear drop poikilocyte interpretation A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Definition: Poikilocyte; an individual cell of abnormal shape Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Explanation Please click. Cause cell to see the blood film, causes and explanation. on each Normal red cell Oxidant damage • Myelofibrosis • Extramedullary haemopoiesis Microcytic Macrocyte G 6 PD deficiency hypochromic Target cell return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Pencil cell 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz Basket case Spherocyte Acanthocyte Malarial parasite

Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz RBC morphology: “Pencil” cell. These are thin elongated RBC|blood film: a basic interpretation morphology: basket cells. Often occur alongside microcytic A blood film can provide key evidence in diagnosing anaemia. cells, therefore is an essential part of all hypochromic It is poikilocyte and investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, occasional target cells. fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Explanation Please click on each cell to see the blood film, causes and explanation. Iron deficiency Oxidant damage Normal red cell Microcytic Macrocyte G 6 PD deficiency hypochromic Target cell Basket case return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Spherocyte Pencil cell Acanthocyte Malarial parasite

Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz RBC morphology: Ring-forms in P. falciprum RBC|blood film: a basic interpretation morphology: basket cell. Intracellular malarial parasite A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Explanation infection. It can lead to DIC and intravascular haemolysis. Oxidant damage A certain cell to see haemolysis occurs with explanation. Please click on eachamount of the blood film, causes andall types of malarial Normal red cell Malaria: Transmitted by the mosquito this disease causes up to 3 Basket case Microcytic Target cell million deaths a year. Macrocytemajor cause of anaemia within the and is a G 6 PD deficiency hypochromic tropics! See malaria module for more information. return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Spherocyte Pencil cell Acanthocyte Malarial parasite

Blood film |blood film: a basic interpretation Partners in Global Health Education Contents 1. Blood film |blood film: a basic interpretation Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz RBC morphology: basket cell. RBC morphology: Stomatocyte A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Explanation Please click Explanation see the blood film, causes and explanation. on each cell to Normal red cell Oxidant damage Liver disease Alcoholism Microcytic Macrocyte G 6 PD deficiency hypochromic Target cell Basket case return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Spherocyte Pencil cell Acanthocyte Malarial parasite

Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz RBC|blood film: a basic morphology: basket cell. RBC morphology: Sickle cell interpretation A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a Explanation normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. In sickle cell anaemia the red blood cell undergoes a “sickling” process due the cell containing haemoglobin S. Explanation Please click on each cell to see the blood film, causes and explanation. Normal red cell In a deoxygenated state this haemoglobin undertakes a permanent Oxidant damage conformational change creating large polymers. As a result these cells become rigid and unable to deform. The red cell eventually Basket case Microcytic Macrocyte Target cell looses its G 6 PD deficiency becomes damaged as it travels cell membrane and hypochromic through the circulation changing into the sickled shape we see. This eventually leads to an early cell death (hemolysis). return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Spherocyte Pencil cell Acanthocyte Malarial parasite

Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use Blood film Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz RBC morphology: Micro-Spherocyte. This slide shows spherocytes caused by hereditary spherocytosis. They sit amongst a RBC|blood film: red basic interpretation morphology: basket cell. larger polychromatic cells. A blood film can provide key evidence in diagnosing anaemia. It is therefore is an essential part of all investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Cause | Explanation Please click on each cell. Abnormality of cytoskeleton proteins. These to see the blood film, causes and explanation. Normal red cells are excessively Oxidant damage permeable to sodium influx. Cell looses membrane on passage through reticuloendothelial Basket case Microcytic Macrocyte Target cell G 6 PD deficiency system. Red cell osmotic fragility hypochromic is characteristically increased. return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Spherocyte Pencil cell Acanthocyte Malarial parasite

Blood film |blood film: a basic interpretation Partners in Global Health Education Contents 1. Blood film |blood film: a basic interpretation Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell structure 2. 3. 1. Cell membrane 2. 3. 2 DNA synthesis 2. 4. Red cell metabolism 2. 5. Haemoglobin 2. 6 O 2 dissociation curve 3. 0. Defining anaemia. 3. 1. Prevalence 3. 2 Clinical features 4. 0. Classifying anaemia 4. 1. red cell indices 4. 2. Morphological 4. 3 Aetiological classification 5. 0 Blood film: a basic interpretation. 5. 0. Blood film: a basic interpretation. 6. 0. Glossary 7. 0. Quiz RBC morphology: cell or small RBC morphology: “Prickle”basket cell. echinocytes. A blood film can provide key Especiallyin diagnosing anaemia. It is therefore is an essential part of all evidence prominent in postsplenectomy patients. investigations into anaemia. A blood sample (anticoagulated venous sample) will be smeared onto a glass slide, fixed and stained. Red cells are examined along with white cells, granulocyte precursors, blast cells. Definition: Echinocyte: cell with abnormal blunt or sharp projections on surface. Can be up to 30 projections per cell. Red cells appear paler in their centre of the cell due to their biconcave. The pinkish colour one observes in a normal blood film is a result of the cells unique haemoglobin content. Shape, size and colour are the key variables to observe. Explanation Please click. Explanationto see the blood film, causes and explanation. on each cell Oxidant damage • Pyruvate kinase deficiency Normal red cell Microcytic Macrocyte G 6 PD deficiency hypochromic Target cell Basket case return Elliptocyte Fragments Stomatocyte Sickle cell Tear drop poikilocyte Spherocyte Pencil cell Acanthocyte Malarial parasite

|glossary Partners in Global Health Education Contents Anaemia: 1. 1 Introduction 1. 2 use |glossary Partners in Global Health Education Contents Anaemia: 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes a haemoglobin concentration in peripheral blood below normal range for sex and age Haemoglobin: a metalloprotien inside a red blood cell that is responsible for oxygen delivery. It is composed of four globulin chains each containing an iron containing haem group. Macrocytic: Red cells of average volume (MCV) above normal. Mean cell volume: the average volume of circulating red cells 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section. Mean Corpuscular Haemoglobin (MCH): The average haemoglobin content of red blood cells. Microcytic: red cells of average volume (MCV) below normal Normoblast: nucleated red cell precursor normallyy found in the bone marrow Poikilocytosis: variation in shape of peripheral blood red cells Reticulocyte: a non-nucleated young red blood cell still containing RNA. Can be found in the peripheral blood and bone marrow. Stem cell: resides in the bone marrow and by division and differentiation gives rise to all the blood cells Sickle cell disease: an inherited disorder of haemoglobin of varying severity. The name arises from the deformed shape of the red blood cell takes when the abnormal haemoglobin inside them polymerizes at low oxygen concentrations. Thalassaemias: a spectrum of inherited disorders of haemoglobin where there is an inbalance in globin chain production.

|references and links Partners in Global Health Education Contents 1. 1 Introduction 1. 2 |references and links Partners in Global Health Education Contents 1. 1 Introduction 1. 2 use this module 1. 3 Learning outcomes 2. 1. The erythrocyte 2. 2. Erythropoiesis 2. 3. Red cell membrane 2. 4. Haematinics 2. 5. Red cell metabolism 2. 6. Haemoglobin 2. 7. Ageing and death Quiz 1 3. 0. Defining anaemia. 3. 1. Prevalence 3. 1. Clinical features Quiz 2 4. 0. Classifying anaemia 4. 1. red cell indices. 4. 2. Morphological classification 4. 3. Aetiological classification 5. 0. Blood film: a basic interpretation. 5. 1. Anaemia cards Quiz 3. 6. 0. Glossary 7. 0. References please click on contents to repeat a section.

Partners in Global Health Education iron deficient anaemia; an overview Colon cancer microcytic hypochromic Partners in Global Health Education iron deficient anaemia; an overview Colon cancer microcytic hypochromic blood film. Return

Partners in Global Health Education Β-Thalassaemia R. C. I. : a microcytic hypochromic anaemia Partners in Global Health Education Β-Thalassaemia R. C. I. : a microcytic hypochromic anaemia Epi: One of the most common inherited disorders. Common in Africa and Middle East. Mediterranean, Path: Reduced beta globin (of haemoglobin) production. Ineffective erythropoiesis and haemolysis Ix. blood film, Hb electrophoresis Si/Sy. Heterozygotes: often asymptomatic, mild anaemia, low MCV. Homozygote: severe anaemia, failure to thrive in first 6 months of life, splenomegaly, bone hypertrophy (secondary to extramedullary haemopoiesis). Tx. β-thalassaemia major requires repeated blood transfusion and iron chelation. Return

Partners in Global Health Education Sickle cell disease (Hb. SS); an overview R. C. Partners in Global Health Education Sickle cell disease (Hb. SS); an overview R. C. I. : a microcytic hypochromic anaemia Aet: Autosomal recessive genetic disorders due to mutation of the gene for Hb. A. Affect primarily people of African origin. Sickle cell trait (Hb. AS) affords strong protection against malaria. Path: Abnormal haemoglobin (Hb. S) undergoes a sickling transformation when in a deoxygenated state resulting in a permanent conformational change of shape. The red cell looses its ability to deform becoming rigid. This can cause occlusion of small vessels and result in sickle cell crises precipitated by hypoxia, dehydration, infection and the cold. IX. Electrophoresis, haemoglobin solubility test. Si/Sy: Txt Dactylitis in a child Bone pain, jaundice, pigment gallstones, leg ulcers, dactylitis in infants. Supportive; analgesia, fluids and antibiotics during crises. Blood film: sickle cells Return

Partners in Global Health Education Vitamin B 12 deficiency path: Aet: Ix. Vitamin B Partners in Global Health Education Vitamin B 12 deficiency path: Aet: Ix. Vitamin B 12 binds to IF intrinsic factor in the stomach and is absorbed in the terminal ileum Folate deficiency Aet: Pernicious anaemia, malabsorpion, post total gastrectomy B 12 MCV platelets. IF antibodies. Check folate levels. Si. /Sy: Gradual deterioration, Irritability, Loss of memory, Painless jaundice, Loss of sensation , Feeling of pins and needles in extremities, ataxic. Txt. Intramuscular (IM) of 1 mg of hydroxycobalamin (Vitamin B 12). There is no oral form. increased consumption (pregnancy), dietary deficiency, folate antagonist (drugs eg; methotrexate, alcohol). Glossitis. Ix. serum folate, red cell folate. MCV Si/Sy: Jaundice. Weight loss. GI disturbances. Glossitis. Txt. Folic acid supplementation. Exclude Vitamin B 12 deficiency first. Blood film; Microcytic hypochromic Return

Partners in Global Health Education G 6 PD deficient anaemia; an overview Path G Partners in Global Health Education G 6 PD deficient anaemia; an overview Path G 6 PD is a key enzyme in the hexose monophosphate shunt. An important function of the shunt is maintain healthy haemoglobin by protection from oxidant stress. In G 6 PD deficiency, haemolytic anaemia occurs. Aet: X-linked Drugs Ix. Direct assay of G 6 PD activity Si/Sy: None other than those of acute / chronic anaemia Rx Avoid precipitants of oxidative stress; drugs (anti-malarials, analgesics), fava beans. Tx. Blood transfusion if required. Fava beans Return

Partners in Global Health Education Hereditary spherocytosis; an overview Epi: 1 in 5000 people Partners in Global Health Education Hereditary spherocytosis; an overview Epi: 1 in 5000 people in Northern Europe. Aet: Autosomal dominant Path. Defective cell membrane protein (spectrin) causes a loss of cell membrane, progressive spherocytosis and eventually premature death (haemolysis). Increased sensitivity to infections such as parvo-virus. Ix. Blood film; spherocytes Increased osmotic fragility. negative antiglobulin test. Si/Sy: asymptomatic. Jaundice, splenomegaly General features of anaemia Txt Give ferrous sulphate , ferritin if deficiency Return

Partners in Global Health Education Autoimmune haemolytic anaemia; an overview These anaemias can be Partners in Global Health Education Autoimmune haemolytic anaemia; an overview These anaemias can be split into ‘warm’ and cold’ types. This is dependent on the temperature at which the antibody reacts with the body. Aet: WARM associated with the production of autoantibodies of Ig. G. They attach to the red cell at body temp and are removed early by the reticuloendothelial system. Path: Idiopathic or precipitated by drugs or autoimmune disease, leukaemia. IX. Bloods: unconjugated haemoglobin, LDH, Reticulocytes. Positive direct antiglobulin test. Si/Sy: Jaundice, general features, splenomegaly Txt 2 nd Steroids, splenectomy as line. Vaccination against H. Influenza, Men C and Pneumococcus. COLD Aet: Associated with the production of autoantibodies of Ig. M and are removed early by the reticuloendothelial system. Usually self-limiting. Path: Idiopathic or secondary to infection or lymphoma. IX. Bloods: unconjugated haemoglobin, LDH, Reticulocytes. Positive direct antiglobulin test. Si/Sy: Worse in cold weather, acrocyanosis (purpling skin), Reynaud's phenomenon. Txt Remove precipitants, keep patient warm, consider immunosuppression. Return of