fbf2f4bece880b6406d45d54e33f6b68.ppt
- Количество слайдов: 30
Measurement and Observation at the Quantum Limit at the Albert-Einstein Institute Hannover Roman Schnabel for the AEI-Division Karsten Danzmann
AEI-Division Prof. Karsten Danzmann * Led by external member Prof. Ken Strain, Glasgow Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 2
The GEO 600 Project - Michelson Laser Interferometer (600 m) for GW detection - German-British collaboration, location Hannover / Germany - Limited by quantum noise 3 Albert - Einstein- Institut Glasgow U Birmingham U Mallorca Roman Schnabel, 23 April 2013, Crieff
H. Grote GEO 600 GEO-HF: - 30 k. W - DC readout - OMC - Tuned, broadband SR - Squeezed Light C. Caves (1981): Replace the vacuum state (zero-point fluctuations) by a squeezed state! Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 4
Shot noise squeezed Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 5
This is not just a proof of principle! GEO 600 regularly uses squeezed light during its observational runs. An application of quantum metrology today! Regular use: [Grote, Danzmann, Dooley, Schnabel, Vahlbruch, Phys. Rev. Lett. , accepted (2013)] Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 6
H. Lück The Einstein-Telescope • 10 km arms • under ground • Cryo-cooled silicon mirrors • 500 W @ 1064 nm • Squeezed light at 1064 nm and 1550 nm (~10 d. B) [M. Punturo et al. , Class. Quantum Grav. 084007 (2010)] European conceptual design study, delivered May 2011 Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 7
B. Willke The Advanced LIGO 180 W-Laser LIGO Livingston Design and fabrication at the AEI/LZH. Three pre-stabilized 180 Wsystems installed at LIGO. [Winkelmann et al. , Appl. Phys. B. (2011); Kwee et al. , Opt. Express (2012)] Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 8
B. Willke Light Power Stabilisation Relative power noise (shot-noise limited): 2 10 -9 Hz-1/2 4 Photodiodes, 50 m. A each, aligned for lowest pointing coupling Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 9
B. Willke Light Power Stabilisation (>MHz) Relative power noise of 150 W: RPN=10 -10 Hz-1/2 corresponding to 32 A photo current. Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 10
B. Willke 134 W of TEM 00 green light 150 W @ 1064 nm (in) 130 W @ 1064 nm (out) 134 W @532 nm (130 W in TEM 00), single frequency, single mode, 90% conversion efficiency, stable for more than 48 hours. [T. Meier et al. , Opt. Lett. 35, 3742 (2010)] Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 11
B. Willke 82 W of light in the LG 33 Mode Transfer of 140 W HG 00 into 82 W LG 33 with 95% mode purity. Offers reduction of thermal noise in future GW detectors. On-going collaboration with University of Birmingham. Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 12
S. Goßler / K. Strain The 10 m-AEI-Prototype Facility UHV system, 180° view 100 m 3 volume, currently @ about 5 x 10 -8 mbar (dominated by water vapour, air in 10 -9 mbar region) Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 13
S. Goßler / K. Strain The 10 m-AEI-Prototype Facility Suspended Tables, fres < 300 m. Hz Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 14
S. Goßler / K. Strain Vertical Isolation Performance Noise spectral density [ mm / Hz -1/2 ] 101 100 10 -1 Vertical ground motion 10 -2 10 -3 10 -4 10 -5 Vertical table motion 10 -6 Theoretical model 10 -7 10 -8 10 -1 Albert - Einstein- Institut 100 Frequency [Hz] 101 102 Roman Schnabel, 23 April 2013, Crieff 15
S. Goßler / K. Strain Monolithic Mirror Suspensions First blade spring stage Upper mass with second blade spring stage Penultimate mass 20µm suspension fibers Design: IGR Glasgow Monolithic Stages: IGR Glasgow Mechanics: AEI Hannover 100 g mirror Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 16
R. Schnabel Squeezed Light Wigner function of >10 d. B squeezed vacuum state Parametric down-conversion in c 2 -nonlinear crystal in standing-wave cavity [Vahlbruch et al. , Phys. Rev. Lett. (2008)] [Vahlbruch et al. , New J. Phys. (2007)] [Eberle et al. , Phys. Rev. Lett. (2010)] [Mehmet et al. , Opt. Express (2011)] [Ast et al. , Opt. Lett. (2012)] Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 17
R. Schnabel Squeezed Light Observed squeezing: • Up to 12. 7 d. B @ 1064 nm • Up to 12. 3 d. B @ 1550 nm Parametric down-conversion in c 2 -nonlinear crystal in standing-wave cavity [Vahlbruch et al. , Phys. Rev. Lett. (2008)] [Vahlbruch et al. , New J. Phys. (2007)] [Eberle et al. , Phys. Rev. Lett. (2010)] [Mehmet et al. , Opt. Express (2011)] [Ast et al. , Opt. Lett. (2012)] Albert - Einstein- Institut • Spectrum down to 1 Hz / up to 1 GHz • The GEO 600 Squeezer: Fully controlled, automated source of up to 10 d. B from 10 Hz to > 10 k. Hz Roman Schnabel, 23 April 2013, Crieff 18
R. Schnabel The GEO 600 Squeezed Light Laser Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 19
R. Schnabel Entangled Light for Metrology Einstein. Podolsky. Rosen entangled light beams [S. Steinlechner et al. , ar. Xiv: 1211. 3570] Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 20
R. Schnabel Nano-Structured Mirrors On-going collaboration with Jena University and IGR Glasgow Goal: reduction of mirror thermal noise Up to 100% Reflection (surface waveguide mirror) 0 th -1 st +1 st 0 th Si crystal Finesse ~ 3000 Destruktive Interference [Brückner, RS, Tünnermann et al. , Phys. Rev. Lett. 104, 163903 (2010)] Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 21
R. Schnabel Nano-Structured Mirrors On-going collaboration with Jena University and IGR Glasgow Goal: reduction of mirror thermal noise Joint publications on nano-structured mirrors, suspended in the Glasgow 10 m prototype facility Barr, Strain, Tünnermann, RS et al. , Opt. Lett. 36, 2746 (2011). Friedrich, Strain, Tünnermann, RS et al. , Opt. Express 19, 14955 (2011). Edgar, Strain, Tünnermann, RS et al. , Class. Quantum Grav. 27, 084029 (2010). Edgar, Strain, Tünnermann, RS et al. , Opt. Lett. 34, 3184 (2009). Hallam, Strain, RS et al. , J. Opt. A: Pure Appl. Opt. 11, 085502 (2009). Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 22
R. Schnabel Absorption Measurements on Silicon T = 300 K [J. Steinlechner et al. , submitted to Class. Quantum Grav. (2013)] Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 23
R. Schnabel Opto-Mechanics J. D. Thompson, … & J. G. E. Harris, Nature 452, 72 -75 (2008) 40 nm thickness meff = 80 ng Q-factor = 500. 000 fres = 130 k. Hz R = 17 % @ 1064 nm J. Kippenberg and K. J. Vahala, Science 321, 1172 (2008) Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 24
R. Schnabel Opto-Mechanics Optically cooled membrane resonance: From 300 K to 8 K Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 25
Proposal for an AEI / IGR IMPP Topic: “Ultra-quite Mirror Test Masses” Goals: Design and test of novel low-noise kg -sized mirror systems • Possibly based on silicon • For GW detectors operated at low temperatures • For quantum physical experiments with massive objects GEO 600: 5 kg fused silica mirror with monolithic fibre suspension Albert - Einstein- Institut • Further strengthening the GWD related expertise in north Europe Roman Schnabel, 23 April 2013, Crieff 26
Proposal for an AEI / IGR IMPP Topic: “Quantum Non-Demolition Interferometry” Goals: Design and test of novel interferometer techniques • to surpass the standard quantum limit of gravitational wave detection A. Franzen, AEI Michelson interferometer with two readouts proposed for the generation of entangled mirrors Albert - Einstein- Institut • generating entangled motion of kg-sized test masses (conditional states) Roman Schnabel, 23 April 2013, Crieff 27
A Michelson Interferometer with 2 x balanced homodyne detection (BHD): BHD: X 1 com(t) Low finesse ® Information on which the B be mechanical state can conditioned* BHD: X 2 diff(t) *also: [M. Haixing, S. Danilishin, H. Mu ller-Ebhardt, Y. Chen, New J. Phys. 12, 083032 (2010)] Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 28
Conditionally Pure Mirror States Problem: Thermal occupation number of mechanical oscillator: p. A(t) − p. B(t) x. A(t) − x. B(t) For pendulum with period 1 s: W = 2 p Hz n<1 ! ® T < 4∙ 10 -10 K ! Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 29
Summary The AEI’s expertise: • Operation and improvement of GEO 600 • Design activity on the Einstein Telescope • Ultra-stable high-power laser light • Squeezed and entangled light • A new low-noise 10 m prototype facility • Research on nano-structured and silicon mirrors • Opto-mechanics with micro-oscillators Combining these with the expertise in Scotland (IGR Glasgow) on GW detectors, low noise mirror suspensions, and low temperature experiments will provide an outstanding position for R&D for GW detectors and quantum physical experiments with massive objects. Albert - Einstein- Institut Roman Schnabel, 23 April 2013, Crieff 30
fbf2f4bece880b6406d45d54e33f6b68.ppt