Скачать презентацию May 2009 doc IEEE 802 15 -09 Скачать презентацию May 2009 doc IEEE 802 15 -09

0efb865c868a4d1f7747c4cdbe2fdec2.ppt

  • Количество слайдов: 21

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Project: IEEE P May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Project: IEEE P 802. 15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Block based PHY and Packet Transmission for Low Data Rate In-body WBAN Date Submitted: [4 MAY 2009] Source: [Dong-Sun Kim 1, Jong-Ik Song 1, Tae-Ho Hwang 1, Young-Hwan Kim 1, Jae-Gi Son 1, Sang-Jin Hyun 1, Ha-Joong Chung 1, Chang-Won Park 1 and Yangmoon Yoon 2] Company: [KETI 1, KORPA 2] Address : [KETI 1 ; #68 Yatap-dong Bundang-gu, Seongnam-si, Gyeonggi-do 463 -816, South Korea, KORPA 2 ; 78 Garak-dong, Songpa-gu, Seoul, 138 -803, South Korea] Voice: [+82 -31 -789 -73841, +82 -2 -2142 -21622], FAX: [+82 -31 -789 -75591, +82 -2 -2142 -21992] E-Mail: [[email protected] re. kr 1, yoon [email protected] com 2] Re: [] Abstract: Key requirements of the BAN standards effort, including power, cost and throughput scalability, can be addressed using a scalable block frame structure based on variable block FEC. In addition, BCH encoded 2 FSK modulation scheme enable simple structure, low power consumptions and low cost transceiver implementation under inbody communication channel. Purpose: This document is intended as a proposal for addressing the requirements of the TG 6 standard. Notice: This document has been prepared to assist the IEEE P 802. 15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P 802. 15. Submission D. S Kim, J. I C. W Park, KETI Slide 1 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Contributors Name E-Mail May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Contributors Name E-Mail Affiliation Dong Sun Kim [email protected] re. kr KETI Jong-Ik Song jisong [email protected] com KETI Tae-Ho Hwang [email protected] re. kr KETI Young-Hwan Kim yhkim [email protected] re. kr KETI Jae Gi Son [email protected] re. kr KETI Sang-Jin Hyun [email protected] com KETI Ha-Joong Chung [email protected] re. kr KETI Chang-Won Park [email protected] re. kr KETI Yangmoon Yoon yoon [email protected] com KORPA KETI : Korea Electronics Technology Institute KORPA : Korea Radio Promotion Agency Submission D. S Kim, J. I C. W Park, KETI Slide 2 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Presentation Outline • May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Presentation Outline • Applications for low data-rate in-body WBAN • Topology for Implantable Devices • Regulations for 400 MHz MICS • Comparison of Modulations • Design objective and Physical layer Functions • Data Rate and Modulation for In-body Communication • Proposed MAC architecture and Frame Structure • Extended MAC Protocol based on proposed PHY • Performance and Conclusion • Reference Submission D. S Kim, J. I C. W Park, KETI Slide 3 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Applications for Low-data-rate May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Applications for Low-data-rate In-body WBAN • Applications for Implantable BAN - Deep Brain Stimulator - Implantable Cardioverter Defibrillator - Pacemaker - Drug-Delivery Target Data Rate Latency BER ECG 192 Kbps (6 Kbps, 32 channels) < 250 ms < 10 -10 256 Kbps < 250 ms < 10 -10 Deep Brain Stimulator < 320 Kbps < 250 ms < 10 -10 Drug Delivery Submission Application < 16 Kbps < 250 ms < 10 -10 EMG (8 KHz sample, 16 -bit ADC, 2 channels) D. S Kim, J. I C. W Park, KETI Slide 4 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Topology for Implantable May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Topology for Implantable Devices • Maximum Number of Nodes – Under 10 Nodes in 2 m (Address: 232 Nodes) • Star Topology D 0 – Indirect Transmission – Broadcast – Multi-hop Link Wakeup D 3 D 2 C Wakeup C D Wakeup Data [Coordinator / Device] Submission [Indirect Transmission] D 1 D. S Kim, J. I C. W Park, KETI Slide 5 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Regulations for 400 May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Regulations for 400 MHz MICS • International Reference – ITU-R SA 1346, Sharing between the Meteorological Aids Service and Medical Implant Communications Systems(MICS) operating in the Mobile Service in the Frequency Band 401 -406 MHz • US standards – US FCC Regulations, available from www. fcc. gov : – 47 CFR 95. 628 Scenario Description Frequency Band Channel Model S 1 Implantable to Implantable 402 -405 MHz CM 1 S 2 Implantable to Body Surface 402 -405 MHz CM 2 S 3 Implantable to External 402 -405 MHz CM 2 S 4 Body Surface to Body Surface(LOS) 13. 5, 50, 400, 600, 900 MHz 2. 4, 3. 1 -10. 6 GHz CM 3 S 5 Body Surface to Body Surface(NLOS) 13. 5, 50, 400, 600, 900 MHz 2. 4, 3. 1 -10. 6 GHz CM 3 S 6 Body Surface to External (LOS) 900 MHz 2. 4, 3. 1 -10. 6 GHz CM 4 S 7 Body Surface to External (NLOS) 900 MHz 2. 4, 3. 1 -10. 6 GHz CM 4 – FCC add adjacent spectrum(401~402 & 405~406 MHz) for MICS March 19, 2009, By report and order(FCC 09 -23) Submission D. S Kim, J. I C. W Park, KETI Slide 6 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Why FSK? • May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Why FSK? • Bandwidth & power limited system – Error probability of BPSK – Error probability of 2 FSK 300 KHz GFSK -20 d. BC 2 FSK Power limited : Using 2 FSK instead of BPSK BW limited : Using GFSK instead of 2 FSK Submission D. S Kim, J. I C. W Park, KETI Slide 7 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Why not M-ary May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Why not M-ary FSK? • Simulation results under channel model 2 – BPSK, 2 FSK, 4 FSK • System configuration – CM 2 400 MHz Path Loss model • • link budget – Carrier Frequency : 403. 5 MHz – BW : 300 k. Hz – MCS • • • – – – Submission 10 cm away from the body surface, FSPL can be added to CM 2. 2 FSK – coherent / non-coherent BPSK – hard decision 4 FSK – coherent / non-coherent Noise Figure : 5 d. B HW loss margin : 5 d. B Thermal noise : -119. 229 d. Bm Tx power : 25μW Antenna Gain : 0 d. B D. S Kim, J. I C. W Park, KETI Slide 8 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Why FEC? • May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Why FEC? • Forward Error Correction (FEC) is a system meant to minimize the amount of digital data lost on transfer. • Additional methods to diminish error-rates are ARQ, and Data Carousel, that are sometimes used together with FEC. • Does not require a back-channel (as opposed to ARQ). Therefore, an excellent solution for multicast of medical information such as ECG. k bits or symbols Data block FEC encoding n Data k Submission Redundant n-k D. S Kim, J. I C. W Park, KETI Slide 9 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Channel description & May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Channel description & System performance Performance assessment of different MCS Comparisons of BCH and RS BCH Reed-Solomon CC Implementation Encoding Decoding Simple Complex Suitable good Need more parities Excellent Suitable good Fairly complex Ability error Correction behavior Burst ≥ m Burst < m Hardware complexity reasonable FEC scheme BCH(127, 120) RS(31, 17) CC(1/2, K= 7) Coding gain 2. 2 d. B 2. 7 d. B 3 d. B 1) Coherent Rx and CM [2] 2) Reference: [1] – [7] Submission D. S Kim, J. I C. W Park, KETI Slide 10 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Design Objective and May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Design Objective and Proposed Physical Layer Functions For In-body WBAN • Design objective – Scalable packet size • Advantage : In highly attenuated in-body model, scalable block based transmission would be better than fixed packet based transmission. • Bitmap based data-block management – High reliability • Header : 16 byte, BCH(128, 120) • Data : variable block length (Max block FEC: BCH(256, 247)) • Error control flow using block map based frame structure. – Power and Bandwidth efficiency modulation – Modulation and Functions Submission D. S Kim, J. I C. W Park, KETI Slide 11 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Proposed Data Rate May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Proposed Data Rate and Modulation • Power efficient FSK Modulation • Band limited gaussian pulse shape filter – Improve spectrum efficiency at the cost of increased ISI – Cause elevated BER compared with a typical FSK • FEC for compensating the elevated BER – Extended Binary Primitive BCH Codes Frequency Band 402 -405 MHz MICS Channel /BW Data rate 10 500 Kbps 1) (300 KHz/CH) Modulation FEC Pulse shape Filter FSK BCH Header (128, 120) Payload (256, 247) Low BT Gaussian Filter (Modulation index = 1, BT = 0. 25) 1) 500 kbps is a minimum transmission data rate for 8 bit RGB 256 x 256 pixel color image with 1 fps and 4: 1 image compression ratio JPEG compression ratio is typically 4: 1 for CT and MR. 32 channel ECG need minimum 192 kbps and 2 channel EMG needs 256 kbps. Submission D. S Kim, J. I C. W Park, KETI Slide 12 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Proposed In-body MAC May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Proposed In-body MAC Architecture • Use IEEE 802. 15. 4 MAC and Extend Primitives – Primitives for Block based Error control – Extended Primitives make common MAC frame if errors exist Submission D. S Kim, J. I C. W Park, KETI Slide 13 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 MAC Channel Access May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 MAC Channel Access • Coordinator must do CCA each channel before transmitting to a in-body device – CCA each channel over 10 ms • Data transmission – Block map based transmission • Binary Sequencing • 1 bit Flow Control – Frame pending or stop transmission • 48 bit address information – 16 bit BAN ID, 32 bit transceiver ID Submission D. S Kim, J. I C. W Park, KETI Slide 14 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Error Control Frame May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Error Control Frame Structure • • • Header FEC for implantable devices 32 bit Bitmap Block for 32 data blocks 16 bit Ban ID : Medical Service ID 32 bit Transceiver ID : 232 = 4 G Scalable Block Size : - Number of bits in Block : 8/16/32/64/128/256 Submission D. S Kim, J. I C. W Park, KETI Slide 15 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Retransmission Mechanism Submission May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Retransmission Mechanism Submission D. S Kim, J. I C. W Park, KETI Slide 16 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Flow Control Submission May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Flow Control Submission D. S Kim, J. I C. W Park, KETI Slide 17 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Simulation Result (1) May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Simulation Result (1) • PER comparison of variable packet size – Variable packet sizes are not issue under CM 2 Channel – Block size depend on sending data size and variable block size reduced the zero padding bit for FEC Submission D. S Kim, J. I C. W Park, KETI Slide 18 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Simulation Result (2) May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Simulation Result (2) • Transmission efficiency – The Efficiency R is given by [11] – – N : block message B : the number of bits per block L : information bits H : message header Performance : BCH + Retransmission > Convolution Code > without FEC Complexity : Convolution Code > BCH + Retransmission > without FEC Submission D. S Kim, J. I C. W Park, KETI Slide 19 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Conclusion • Transceiver May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Conclusion • Transceiver with error control enabled scalable frame block decreases retransmission packet size and increases duty efficiency • Use 2 FSK combined with block FEC at low data rate to let simple receiver structure and implementation • This presentation introduces key scheme to be applicable to a standard of WBAN Submission D. S Kim, J. I C. W Park, KETI Slide 20 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.

May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Reference 1. Kamya May 2009 doc. : IEEE 802. 15 -09 -0317 -02 -0006 Reference 1. Kamya Yekeh Yazdandoost and Ryuji Kohno, “Channel Model for Body Area Network(BAN)”, 802. 15 -08 -0780 -09 -0006, April 2009 2. Sukor. M, Ariffin. S, , “Performance Study of Wireless Body Area Network in Medical Environment, ” Second Asia International Conference on, 2008 3. doc. IEEE 802. 15 - 08 -0 -00 -0006 4. doc. IEEE 802. 15 -08 -0689 -00 -0006 5. B. Sklar, “Digital Communications 2 nd Edition, ” Prentice Hall. / A. Goldsmith, “Wireless Communications, ” stanford university. 6. “Reed-Solomon codes for land mobile satellite channels, ” Elec. letters, 15 th Aug. 1991, vol. 27. No. 17 7. J. A. Heller and I. M. Jacobs, ”Viterbi Decoding For Satellite and Space Communication, ” IEEE Trans. Commun. Technol. , vol. COM 19, no. 5, October 1971, Fig. 7, p. 84 ⓒ 1971 IEEE 8. FCC add adjacent spectrum(401~402 & 405~406 MHz) for MICS March 19, 2009, By report and order(FCC 09 -23) 9. FCC, Medical implant communications, January index. htm? job=service_home&id=medical_implant 2003, http: //wireless. fcc. gov/services/ 10. Arthur W. ASTRIN, Huan-Bang LI, and Ryuji KOHNO, “Standardization for Body Area Networks, ” IEICE TRANS. COMMUN. , Vol. E 92 -B, No. 2, pp. 366 -372, February 2009 11. Richard A. Comroe and D. J. Costello. Jr. , “ARQ Schemes for Data Transmission in Mobile Radio Systems, ”, IEEE journal on selective areas in communications, vol. sac-2, No. 4, July 1984 Submission D. S Kim, J. I C. W Park, KETI Slide 21 Song, T. H Hwang, Y. H Kim, J. G Son, S. J Hyun, H. J Chung, M Yoon, KORPA Y.