Maxwell’s Equations Equivalent Currents Maxwell’s Equations in Integral

Скачать презентацию Maxwell’s Equations Equivalent Currents Maxwell’s Equations in Integral Скачать презентацию Maxwell’s Equations Equivalent Currents Maxwell’s Equations in Integral

27454-maxwells_equations.ppt

  • Количество слайдов: 9

>Maxwell’s Equations Equivalent Currents Maxwell’s Equations in Integral Form Maxwell’s Equations for Stationary Fields Maxwell’s Equations Equivalent Currents Maxwell’s Equations in Integral Form Maxwell’s Equations for Stationary Fields Maxwell’s Equations in Differential Form Material Equations Properties of Maxwell’s Equations Energy of Electromagnetic Field

>Equivalent Currents Equivalent Currents

>Maxwell’s Equations in Integral Form The circulation law for E demonstrates that any changing Maxwell’s Equations in Integral Form The circulation law for E demonstrates that any changing magnetic field creates eddy electric field. The Gauss’s theorem for D shows that any electric charge causes the appearance of electrostatic field in the space near it. The circulation law for H states that there are two reasons for the appearance of the magnetic field: conduction current and changing magnetic field. The Gauss’s theorem for B proves that there are no magnetic charges in the nature.

>Maxwell’s Equations for Stationary Fields Maxwell’s Equations for Stationary Fields

>Maxwell’s Equations in Differential Form Maxwell’s Equations in Differential Form

>Maxwell’s Equations in Differential Form (cont.) Maxwell’s Equations in Differential Form (cont.)

>Material Equations Material Equations

>Properties of Maxwell’s Equations Maxwell’s equations are linear. Maxwell’s equations are correct in any Properties of Maxwell’s Equations Maxwell’s equations are linear. Maxwell’s equations are correct in any inertial frame of reference. About the symmetry of Maxwell’s equations: About the electromagnetic waves.

>Energy of Electromagnetic Field Energy of Electromagnetic Field