
9ee90d76c04febd6a917990b2c8df447.ppt
- Количество слайдов: 64
Long coherence times with dense trapped atoms collisional narrowing and dynamical decoupling Nir Davidson Yoav Sagi, Ido Almog, Rami Pugatch, Miri Brook (Kurizki group, Michael Aizenman) Weizmann Institute of Science, Israel
Why dense atomic ensembles? • Efficiency of quantum memories depends on optical depth • Strong nonlinearity per photon • Collective coupling to SC circuits • Unique model system!
Quantum memories 2010 - : Us, Kuzmich, Porto, Rosenbusch, Bloch ….
Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling
Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling
Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling
Experimental setup • Magneto optical trapping • Sisyphus cooling • Raman sideband cooling • Evaporative cooling
Outline • Collisional narrowing • Spectrum with discrete fluctuations • Motional broadening • Dynamical decoupling • Bath spectral characterization
Motional narrowing “ ”
Collisional narrowing Gaussian Exponent
Experimental results Collisional narrowed decay time Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010) Inhomogeneous decay time
Experimental results Data collapse! Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)
Mott insulator suppresses collisions • Mott-Insulator atom per site with exactly one • ~80 Hz EIT lines • ~250 msec storage time for light U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, PRL 2010
Discrete Vs continuous fluctuations Kubo-Anderson model • Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)
Discrete Vs continuous fluctuations Kubo-Anderson model • Cold collisions in atomic ensembles • Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)
Discrete fluctuations • Telegraph noise in semiconductors • Single molecule spectroscopy
Solution of the discrete model Without collisions: With collisions: A. Brissaud and U. Frisch, J. Math. Phys. 15, 524 (1974).
Atoms in 3 D harmonic trap Density of states for 3 D harmonic trap Boltzmann factor
How do we measure the parameters? • t 1 is measured in low density with
• G is measured by inducing oscillations in the waist of the atomic cloud and observing their decay:
Comparing theory to experiment Y. Sagi, R. Pugatch, I. Almog and N. Davidson, Phys. Rev. Lett. 104, 253003 (2010)
Comparison to Kubo’s model Bloembergen et al, PRA 1984
Can fluctuations broaden the spectrum ? Example: Student’s t-distribution Motional narrowing A. Burnstein, Chem. Phys. Lett. 83, 335 (1981).
Can fluctuations broaden the spectrum ? Example: Student’s t-distribution Motional broadening A. Burnstein, Chem. Phys. Lett. 83, 335 (1981). Motional narrowing
Can fluctuations broaden the spectrum ? Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)
Mathematical proof for stable distributions where α - characteristic exponent of a stable distribution Gaussian: α=2, Cauchy: α=1, Levi: α=1/2 Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)
Motional broadening: exponential decay Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)
Effect of cutoff Motional broadening persists until cutoff is sampled
Relation to Zeno and anti Zeno Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and N. Davidson, PRA, in press (2011)
Suppression of collisional decoherence by dynamical decoupling
Echo fails at high densities
Dynamical Decoupling Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)
Process tomography of DD Y. Sagi, I. Almog and N. Davidson, Phys. Rev. Lett. 105, 093001 (2010)
Process tomography of non-linear Hamiltonian “twist” of the Bloch sphere Rubidium 87: a 11+a 22 -2*a 12 = 0. 3% of a 11 and a 22
Measuring the bath spectrum S(w) F(w, t) W w Continuous Rabi pulse The decay rate is G. Gordon et. al. , J. Phys. B: At. Mol. Opt. Phys. 42, 223001
Measured collisional bath spectrum Lorentzian Trap oscillation frequency I. Almog et. al. , submitted (2011)
Measured decay vs predictions from bath spectrum I. Almog et. al. , submitted (2011)
Anomalous diffusion of atoms in a 1 D dissipative lattice
Motional broadening in real space Q=1. 0 Q=1. 57
Measurements of 1 D anomalous diffusion Ballistic Diffusion
Self similarity
Summary Collisional narrowing PRL 105 093001 (2010) Discrete fluctuations PRL 104, 253003 (2010) Dynamical decoupling PRL 105 053201 (2010) Collisional broadening Bath characterization Anomalous diffusion PRA, in press (2011) submitted (2011) in preparation (2011)
Outline • Collisional narrowing Y. Sagi, I. Almog and ND, PRL 105 093001 (2010) • Spectrum with discrete fluctuations Y. Sagi, I. Almog, R. Pugatch and ND, PRL 104, 253003 (2010) • Motional broadening Y. Sagi, I. Almog, R. Pugatch, M. Aizenman and ND, submitted (2010) • Dynamical decoupling Y. Sagi, I. Almog and ND, PRL 105 053201 (2010) • Bath spectral charecterization I. Almog et. al. , submitted (2011)
How to create a Power-law velocity distribution? • Don’t be in thermal equilibrium! • Sisyphus cooling scheme: Y. Castin, J. Dalibrad, C. Cohen-Tannoudji (1990)
Measurements of 1 D anomalous diffusion Ballistic Diffusion
Measurements of 1 D anomalous diffusion It is possible to measure both the spatial atomic distribution and the velocity distribution (by a time of flight method).
Direct observation of anomalous diffusion
1 D anomalous diffusion Ballistic Normal diffusion
Self similarity in the experiment
Self similarity in the experiment (2)
Effect of cutoff Motional broadening persists until cutoff is sampled
Optimal DD sequence for a Lorentzian bath G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007).
Process tomography of non-linear Hamiltonian
Mott insulator suppresses collisions • Mott-Insulator atom per site with exactly one • ~80 Hz EIT lines • ~250 msec storage time for light U. Schnorrberger, J. D. Thompson, S. Trotzky, R. Pugatch, N. Davidson, S. Kuhr, and I. Bloch, PRL 2010
Measured collisional bath spectrum Lorentzian part Axial oscillation frequency Radial oscillation frequency
Gaussian theory: Kubo’s model • An ensemble of oscillators with a distribution of resonant frequencies. • If is a Gaussian process, the dephasing is given in terms of the correlation function by: • For a Poissonian fluctuations, we obtain:
The solution of the model Without collisions: With collisions: Where the tilde stands for the Laplace transform. The spectrum can be calculated by:
Measuring the bath spectrum
B
Dephasing of optically trapped atoms In our experiment For Gaussian phase distribution