31ee62dd906e03acc3ab1614fcc870b4.ppt
- Количество слайдов: 7
La. RC Instrument Incubator Project Update by M. J. Kavaya, G. J. Koch, J. Yu, U. N. Singh, B. Trieu, F. Amzajerdian NASA Langley Research Center M. Petros Science and Technology Corp. to Working Group on Space-Based Lidar Winds Jan. 17 -20, 2006 Key West, Florida Kavaya – IIP-2004 1
Project Approach • • • Proposed as partnership between La. RC and Raytheon Space and Aircraft Systems Cancellation by NASA Exploration of “Laser/Lidar Technologies for Exploration” Project in FY 06 and beyond produced immediate threat to La. RC lidar group Examined possibility of in-house execution of project and converted to that approach during December 2005 We greatly appreciate Raytheon’s interest and contributions and look forward to joint efforts in future Official start date is 12/20/05; 3 years duration Will use La. RC’s unique Ho: Tm: Lu. LF solid-state 2 -micron laser technology Will begin with partially conductively cooled (PCC) laser design (LDAs are conductively cooled and the laser rod is liquid cooled). The packaged lidar may be upgraded to fully conductively cooled (FCC) in the future. Will package with eye on aircraft operation and space qualification needs Beyond IIP, will require telescope, scanner, and software for aircraft operation Kavaya – IIP-2004 2
Global Tropospheric Wind Profiles: Example Roadmap 2 -Micron Coherent Doppler Lidar 2 micron laser 1988 Diode Pump Technology 1993 High Energy Technology 1997 Inj. Seeding Technology 1996 Autonomous Oper. Technol. Aircraft Operation Diode Pump Technology Packaged Lidar Ground Demo. 3 -Yr. Lifetime Validation Threshold, Demo, NPOESS Space Qualif. Inj. Seeding Technology Compact Packaging Pre-Launch Validation UAV Operation Autonomous Oper. Technol. 1 micron laser Lifetime Validation Space Qualif. Conductive Cooling Techn. 1999 Lifetime Validation Conductive Cooling Techn. Pre-Launch Validation High Energy Technology 400 km 3 -Yr. Lifetime Validation Compact Packaging Packaged Lidar Ground Demo. 0. 355 -Micron Direct Doppler Lidar Perf. Simulations Ground. Based Risk Reduction (IPO) Kavaya – IIP-2004 2 micron Doppler wind aircraft flights OSSE’s 1 micron altimetry space missions Past Funding Pump Laser Diode Advancement Dual Wavelength Telescope & Scanner Laser Risk Reduction Program IIP-2004 Projects Optional 3
La. RC Development of Pulsed, 2 -Micron Laser Technology For Space Category Sub-Category/Date Demonstrated 12/96 7/97 12/97 6/99 6/00 6/01 6/02 9/02 2/03 4/03 11/03 2/05 12/05 Pulse Energy (J) (in double pulse) 0. 7 0. 6 0. 125 0. 17 0. 150 0. 6 0. 135 0. 355/ 0. 6 0. 095 0. 626/ 1. 05 0. 1/ 0. 073 1/1. 5 1. 2 Pulse Rate (Hz) 1 10 6 1 2 2 10 2 2/10 2 2 1. 77 1. 85 3. 05 2. 37 4. 66 3. 33 3. 65 3. 66 2. 57 4. 10 2. 78 6. 2 TBS ü ü ü ü Efficiency (%) (O-O) Laser Component Oscillator Preamplifier Amplifiers Laser Mode Q-Switched ü 5 x 1 pass 4 x 1 pass ü ü 2 x 2 pass ü ü Double Q-Switched ü ü ü 2 x 2 pass ü ü ü ü All liquid 1 x 2 pass ü ü Injection Seeded=SLM Cooling 2 x 1 pass ü ü ü amp ü Partially conductive ü ü ü osc ü ü ü All cond w/o heat pipe All cond w/ heat pipe Crystal Host YLF ü ü ü ü Lu. Li. F Pump Diodes C Package ü ü ü ü amp ü A package ü ü ü osc ü ü ü ü ü laser ü ü AA package G package Pumping Direction End-pumped amps Side-pumped ü ü ü osc ü ü ü Packaging Laboratory Table ü ü ü ü Compact, Engineered Notes O-O = Optical to Optical; DP = Diode Pumped; FLP = Flash. Lamp Pumped head Amp = DP; Osc = f. LP Both Osc & Amp = DP SPARCLE (NMP, EO-2) Amps = endpumped Double Pulse Double with Ampl Lu. Li. F, A pkg, PCC Ampl Monolithic head 1 J in double pulse FCC, engr head 1 J in single pulse 4
La. RC Development of Pulsed, 2 -Micron Laser Technology For Space Category Sub. Category/Date 6/02 9/02 2/03 4/03 11/03 2/05 12/05 Demonstrated (Side-Pumped, Lu. Li. F) Pulse Energy (J) (in double pulse) 0. 135 0. 355 /0. 6 0. 095 0. 626/ 1. 05 0. 1/ 0. 073 1/1. 5 Pulse Rate (Hz) 2 2 10 2 2/10 3. 65 3. 66 2. 57 4. 10 ü ü Efficiency (%) (OO) Laser Component Oscillator Q-Switched 1 x 2 pass ü Double Q-Switched ü 1. 2 0. 25 2 2 10 5 -10 2. 78 6. 2 TBS ü ü ü 1 x 2 pass 1 x 2 -pass ü ü 2 x 2 pass ü ü ü ü ü All liquid Partially conductive 2 x 2 pass ü ü Injection Seeded=SLM Cooling SPACE DEMO ü Amplifiers Laser Mode IIP Preamplifier LRRP amp ü ü ü osc ü ü ü All cond w/o heat pipe All cond w/ heat pipe Pump Diodes ü C Package A package ü ü amp ü ü ü osc ü ü AA package ü G package Packaging Laboratory Table Compact, Engineered ü ü ü laser head ü ü 5
Pulsed Laser Efficiency When DC-DC Converter Pump Laser Diodes Electricalto-Optical Laser Opticalto. Optical Wavelength Conversion WPE Notes 0. 355 Micron Nd: YAG Laser 2006 0. 8 0. 50 (808 nm) 0. 18 0. 4 0. 029 Steve Li, 12/22/05, 0. 8 J @ 100 Hz (1 micron) In 5 Years 0. 8 0. 55 (808 nm) 0. 21 0. 45 0. 042 Steve Li, 12/22/05, 0. 8 J @ 100 Hz (1 micron) 2 Micron Ho: Tm: Lu. Li. F Laser 2006 0. 8 0. 50 (792 nm) 0. 025 N/A 0. 010 Jirong Yu, 1/6/06, 250 m. J, 10 Hz In 5 Years 0. 8 0. 55 (792 nm) 0. 032 N/A 0. 014 Jirong Yu, 12/8/05, 250 m. J, 10 Hz WPE = Wall Kavaya – IIP-2004 Plug Efficiency 6
Conclusions • We are pleased that NASA has selected several wind related IIP proposals • We are grateful for the previous NASA and IPO/NPOESS funding that has brought us to this point • We regret that NASA funding issues will not let us partner with Raytheon for this project • The combination of past progress, the La. RC and GSFC IIP’s, the dual Doppler lidar approach, and aircraft validation flights should enable a space demonstration mission in a few years Kavaya – IIP-2004 7
31ee62dd906e03acc3ab1614fcc870b4.ppt