Исследования скважин.pptx
- Количество слайдов: 57
Контроль за работой глубинно-насосных скважин осуществляется: - глубинными исследованиями; - динамометрированием скважин, - отбором проб добываемой продукции. Исследования проводят при установившихся режимах с целью получения индикаторной линии и установления зависимости дебита от режимных параметров установки. По результатам исследований определяют параметры пласта и устанавливают режим работы скважины.
Теоретические основы гидродинамических исследований скважин независимы от способа их эксплуатации. Технология исследований зависит от этого. Забойное давление можно определить либо с помощью глубинных манометров, либо по уровню жидкости с помощью эхолота. Малогабаритные скважинные манометры диаметром 22 25 мм спускают в кольцевой зазор между НКТ и обсадной колонной на проволоке через отверстия в эксцентричной планшайбе, которая позволяет подвесить трубы со смещением от центра скважины для увеличения проходного сечения межтрубного пространства. В глубоких и искривленных скважинах возможны прихваты и обрывы проволоки. Для специальных исследований используются лифтовые скважинные манометры, спускаемые на НКТ.
Часто скважины, оборудованные ШСН, исследуют с помощью эхолота-прибора для замера уровня в скважине. По положению уровней и по известной плотности жидкости в скважине определяют пластовое и забойное давление. Суть процесса измерения-эхометрии в следующем. В трубное пространство с помощью датчика импульса звуковой волны (пороховой хлопушки) посылается звуковой импульс. Звуковая волна, пройдя по стволу скважины, отражается от уровня жидкости, возвращается к устью скважины и улавливается кварцевым чувствительным микрофоном. Микрофон соединен через усилитель с регистрирующим устройством, которое записывает все сигналы (исходный и отраженный) на бумажной ленте в виде диаграммы (рис. 1). Эхограмма
Для целей исследования дебит скважины можно менять либо изменением длины хода штока (изменением места сочленения шатуна с кривошипом перестановкой пальца шатуна на кривошипе), либо изменением числа качаний (смена диаметра шкива на валу электродвигателя привода СК). Динамометрирование установок Диаграмму нагрузки на устьевой шток в зависимости от его хода называют динамограммой, а ее снятие – динамометрированием ШСНУ. Для снятия динамограммы измерительную часть динамографа (месдозу и рычаг) вставляют между траверсами канатной подвески штанг, а нить 1 приводного механизма самописца прикрепляют к неподвижной точке (устьевому сальнику). Масштаб хода изменяют сменой диаметра шкива 2 самописца (1: 15, 1: 30, 1: 45), а усилия – перестановкой опоры месдозы и рычага. Динамограф предварительно тарируют.
На рис. 11. 3 показана теоретическая динамограмма. Точка А – начало хода устьевого штока вверх АБ – восприятие нагрузки от веса жидкости после закрытия нагнетательного клапана. Отрезок б. Б – потеря хода плунжера в результате удлинения штанг и сокращения труб, отрезок БВ соответствует ходу плунжера вверх. При обратном ходе штока линия ВГ отображает разгрузку штанг от веса жидкости (трубы растянулись, а штанги сократились на длину отрезка П). В интервале ГА (ход плунжера вниз) нагрузка равна весу штанг в жидкости, а при ходе вверх – весу штанг и весу жидкости над плунжером.
Фактическая динамограмма отличается от теоретической и ее изучение позволяет определить максимальную и минимальную нагрузки, длины хода штока и плунжера, уяснить динамические процессы в колонне штанг, выявить ряд дефектов и неполадок в работе ШСВУ и насоса (рис. 4). Практические динамограммы работы ШСН: а – нормальная тихоходная работа; б – влияние газа; в – превышение подачи насоса над притоком в скважину; г – низкая посадка плунжера д – выход плунжера из цилиндра невставного насоса; е – удары плунжера о верхнюю ограничительную гайку вставного насоса; ж – утечки в нагнетательной части; и – полный выход из строя нагнетательной части; к – полный выход из строя всасывающей части; л – полуфонтанный характер работы насоса; м – обрыв штанг (пунктиром показаны линии теоретической динамограммы); з – утечки во всасывающей части
динамографов серии СИДДОС уровнемеров серии СУДОС
Рабочий комплект уровнемера СУДОС – 02 м включает блок электронный и устройство генерации и приема, соединяемые измерительным кабелем. Характеристики уровнемера СУДОС - 02 м Диапазон контролируемых уровней (20 3000) м Диапазон контролируемых давлений (0 100) кгс/см 2 Емкость энергонезависимой памяти 149 измерений Рабочий диапазон температур (-40 +50) Динамографы серии СИДДОС обеспечивают автоматизацию контроля динамограмм типа "нагрузка – положение" в рабочем состоянии и при выходе ШСНУ на режим, а также контроль утечек (тест клапанов) по методу "линии потерь". Результаты измерений (кроме непосредственной индикации) могут быть распечатаны на микропринтере, переданы в блок визуализации или в базу данных на персональном компьютере.
Характеристики динамографа СИДДОС-01 Диапазон контролируемых нагрузок (0 10) тс Диапазон контролируемых перемещений (0 3, 5) м С темпом качаний (3 8) кач/мин Емкость энергозависимой памяти 80 динамограмм
Факторы, влияющие на производительность насоса. обусловлены большим газосодержанием на приеме насоса повышенным содержанием песка в продукции (пескопроявлением) наличием высоковязких нефтей и водоносных эмульсий существенным искривлением ствола скважины отложениями парафина и минеральных солей высокой температурой Производительность насоса зависит также от пригонки плунжера к цилиндру, износа деталей насоса, деформации насосных штанг и труб, негерметичности труб.
Работа насоса считается нормальной, если Коэффициент подачи зависит от ряда факторов, которые учитываются коэффициентами
Значительное количество свободного газа на приеме насоса приводит к уменьшению коэффициента наполнения насоса вплоть до нарушения подачи. Основной метод борьбы – уменьшение газосодержания в жидкости, поступающей в насос. При поступлении жидкости в насос газ частично сепарируется в затрубное пространство. Сепарацию (отделение) газа можно улучшить с помощью защитных устройств и приспособлений, называемых газовыми якорями (газосепараторами), которые устанавливаются приеме насоса (рис. 5). Работа их основана на использовании сил гравитации (всплывания), инерции, их сочетания
. Принципиальные схемы газовых якорей однокорпусного (а), однотарельчатого (б): 1 – эксплуатационная колонна; 2 – отверстия; 3 – корпус; 4 – приемная труба; 5 – всасывающий клапан насоса; 6 – тарелки
В однокорпусном якоре при изменении газожидкостного потока на 180 пузырьки газа под действием архимедовой силы всплывают и частично сепарируются в затрубное пространство, а жидкость через отверстия 2 поступает в центральную трубу 4 на прием насоса. Эффективность сепарации определяется соотношением скоростей жидкости и газовых пузырьков и конструктивным исполнением сепаратора (незащищенный открытый вход или дырчатый фильтр). В однотарельчатом якоре под тарелкой 6, обращенной краями вниз, пузырьки газа коалесцируют (объединяются), а сепарация газа происходит при обтекании тарелки и движения смеси горизонтально над тарелкой к отверстиям 2 в приемной трубе 4. Существуют и другие конструкции якорей, например зонтичные, винтовые.
Отрицательное влияние песка в продукции приводит к абразивному износу плунжерной пары, клапанных узлов и образованию песчаной пробки на забое. Песок также при малейшей негерметичности НКТ быстро размывает каналы протекания жидкости в резьбовых соединениях, усиленно изнашивает штанговые муфты и внутреннюю поверхность НКТ, особенно в искривленных скважинах. Даже при кратковременных остановках (до 10 20 мин) возможно заедание плунжера в насосе, а при большом осадке – и заклинивание штанг в трубах. Увеличение утечек жидкости, обусловленных абразивным износом и размывом, приводит к уменьшению подачи ШСНУ и скорости подачи восходящего потока ниже приема, что способствует ускорению образования пробки. А забойная пробка существенно ограничивает приток в скважину. Снижение дебита вследствие износа оборудования и образования песчаной пробки вынуждает проведение преждевременного ремонта для замены насоса и промывки пробки. К песчаным скважинам относят скважины с содержанием песка более 1 г/л.
Выделяют 4 группы методов борьбы с песком при насосной эксплуатации: 1. Наиболее эффективный метод – предупреждение и регулирование поступления песка из пласта в скважину. Первое осуществляют посредством либо установки специальных фильтров на забое, либо крепления призабойной зоны, а второе – уменьшением отбора жидкости. При этом целесообразно обеспечить плановый запуск песочной скважины увеличением длины хода , числа качаний или подливом чистой жидкости в скважину через затрубное пространство (20 25 % от дебита). 2. Обеспечение выноса на поверхность значительной части песка, поступающего в скважину. Условия выноса по А. Н. Адонину, , где – скорость восходящего потока жидкости; – скорость свободного осаждения песчинки с расчетным диаметром, равным среднему диаметру наиболее крупной фракции, составляющей около 20 % всего объема песка. Это обеспечивается подбором сочетаний подъемных труб и штанг либо подкачкой в затрубное пространство чистой жидкости (нефти, воды).
3. Установкой песочных якорей (сепараторов) и фильтров у приема насоса достигается сепарация песка от жидкости. Работа песчаных якорей основана на гравитационном принципе. Песочный якорь прямого действия одновременно является газовым якорем. Применение песочных якорей – не основной, а вспомогательный метод борьбы с песком. Метод эффективен для скважин, в которых поступление песка непродолжительно и общее его количество невелико. . Принципиальная схема песочного якоря прямого действия: 1 – эксплуатационная колонна; 2 – слой накопившегося песка; 3 – корпус; 4 – приемная труба; 5 – отверстия для ввода смеси в якорь
4. Использование специальных насосов для песочных скважин. При большой кривизне ствола скважины наблюдается интенсивное истирание НКТ и штанг вплоть до образования длинных щелей в трубах или обрыва штанг. Для медленного проворачивания колонны штанг и плунжера "на выворот" при каждом ходе головки балансира с целью предотвращения одностороннего истирания штанг, муфт и плунжера при использовании пластинчатых скребков применяют штанговращатель. Применяют также протекторные и направляющие муфты, скребкизавихрители. Кроме того, принимают режим откачки, характеризующийся большой длиной хода S и малым числом качаний.
Исследования скважин.pptx