Скачать презентацию John Jarvis Claudia Johnson Liana Vetter October Скачать презентацию John Jarvis Claudia Johnson Liana Vetter October

85971c1f17b83bcc81bb792b1f850697.ppt

  • Количество слайдов: 26

John Jarvis, Claudia Johnson & Liana Vetter October 26, 2004 1 John Jarvis, Claudia Johnson & Liana Vetter October 26, 2004 1

Presentation Overview • Quest Resource Corporation • Model Development • Model Implementation Results 2 Presentation Overview • Quest Resource Corporation • Model Development • Model Implementation Results 2

Quest Resource Corporation An oil and gas company whose core business is developing, producing Quest Resource Corporation An oil and gas company whose core business is developing, producing and transporting natural gas 3

Pipeline Schematic Well head/site Pipeline Delivery/Sale Point 4 Pipeline Schematic Well head/site Pipeline Delivery/Sale Point 4

Place in the Market Quest Pipeline Transportation Purchaser In-house Use External Sales 5 Place in the Market Quest Pipeline Transportation Purchaser In-house Use External Sales 5

Quest’s Financial Setting • Revenues of about $11. 7 million • Access to a Quest’s Financial Setting • Revenues of about $11. 7 million • Access to a $150+ million debt facility for future opportunities • Over 900 miles of active pipeline transporting gas to sale points, with further construction underway. • 380 wells planned to be drilled in 2005 in addition to 900+ miles of pipeline construction. 6

Current Approach • Quest’s current gas marketing strategy: – Sales of gas production • Current Approach • Quest’s current gas marketing strategy: – Sales of gas production • 85% (anticipated total produced gas) guaranteed monthly by Quest • The remainder sold daily (swing volume) via market price – Pipeline serves as middleman – Total produced gas = % gas sold on contract + % gas sold daily 9

Goals of the Project • Analyze the market trends and forecasting accuracy of Quest Goals of the Project • Analyze the market trends and forecasting accuracy of Quest • Determine what percentage is optimal to guarantee on contract • Create optimization model Quest can use monthly 10

Model Development 11 Model Development 11

Sale Points Evaluated • Two different sale points – R&H: large and unstable – Sale Points Evaluated • Two different sale points – R&H: large and unstable – Housel: small and unstable • Historical data – Forecasted daily production by sale point (2004) – Actual daily production by sale point (2004) – Daily NYMEX prices (2002 -2004) 12

Market Prices 2002 -2004 13 Market Prices 2002 -2004 13

R&H Sale Point Production 2004 14 R&H Sale Point Production 2004 14

Problem Constraints • Maximum days and amount in debt – Set limit of 2 Problem Constraints • Maximum days and amount in debt – Set limit of 2 days in debt based on 2004 data – Set limit of 10% of production in debt – Conservative limits to minimize risk in case of unexpected changes in production • Bounds on percentage to guarantee – Set upper limit as 95%, highest Quest has used – Set lower limit as 30% to protect against sharp decrease in production 15

Model Formulation • Zi = Production; May vary due to equipment failure, geological variations, Model Formulation • Zi = Production; May vary due to equipment failure, geological variations, etc. • X= Forecasted production amount. • Y= Contractual % amount; decision variable. • Pi = Market Price; Affected by many outside factors (see NYMEX). 16

Market Price • Pi= Daily price assumption 1. 09 For up-market scenario • Pi= Market Price • Pi= Daily price assumption 1. 09 For up-market scenario • Pi= P 0 (adjustment i) • P 0= initial market price (NYMEX) 1 i For down-market scenario 0. 95 17

Model Formulation • Over the course of a month, with each day = i Model Formulation • Over the course of a month, with each day = i a. Zi= actual units of gas (MCF) produced b. If Zi =Y, then, deliver all gas on contract If Zi Y, then, Quest repays debt to pipeline first, then sells remainder at daily market price Zi = production; Pi = market price; Y = contractual %; X = forecasted amt 18

Description of Regret • Regret – difference between optimal revenue and actual revenue • Description of Regret • Regret – difference between optimal revenue and actual revenue • Benefits of regret – Solution does well in rising and falling market – Less sensitive to predicted probabilities 19

Market Scenarios • Up Market Scenario – Optimal solution has Yup = minimum % Market Scenarios • Up Market Scenario – Optimal solution has Yup = minimum % – Put least amount possible on contract, rest on swing volume – Regretup = (Revenueup) - (Revenue) • Down Market Scenario – Optimal solution for Ydn = maximum % – Put maximum possible on contract, rest on swing volume – Regretdn = (Revenuedn) - (Revenue) 20

Regret Objective • Up. Regret = Revenueup(Yup) – Revenueup(Y) • Dn. Regret = Revenuedn(Ydn) Regret Objective • Up. Regret = Revenueup(Yup) – Revenueup(Y) • Dn. Regret = Revenuedn(Ydn) – Revenuedn(Y) • Min prob(up) * Up. Regret + prob(dn) * Dn. Regret Zi = production; Pi = market price; Y = contractual %; X = forecasted amt 21

Computer Implementation • User inputs: – – – Probability the market will rise Sale Computer Implementation • User inputs: – – – Probability the market will rise Sale point Month to forecast, days in month Expected initial NYMEX price Forecasted daily production Expected beginning debt • Program output: – Data file for AMPL • Can be run with regret model to resolve each month 22

Model Implementation and Results 25 Model Implementation and Results 25

Analysis and Recommendation • 50 -55% should be guaranteed monthly if no market predictions Analysis and Recommendation • 50 -55% should be guaranteed monthly if no market predictions added from Quest • Consequences of guaranteeing 50 -55% – $18, 000 additional revenue from January – March 2004 for R&H – $2, 400 additional revenue from January – March 2004 for Housel • Regret model yields more profit than current Quest marketing and provides more consistency between months 26

Problems and Limitations • Problems encountered – – Limited historical data Multiple daily gas Problems and Limitations • Problems encountered – – Limited historical data Multiple daily gas prices (strip price used) Large variability of the gas market Difference in production records from meter inconsistency • Limitations of the solution – Dependent on the market, which is unpredictable – Stochastic variables are based on limited data 27

Letter from Quest • Thank you for allowing your students to assist us on Letter from Quest • Thank you for allowing your students to assist us on this project. The process we went through was in itself beneficial. They have provided us information and analysis that we found to be helpful and even somewhat unexpected. The program they have given us should provide a firmer basis for our decision making for gas marketing. It should get better as time passes and we are better able to provide historical information for it. It was an educational experience for all parties concerned. Thank you for sharing them with us. • Richard Marlin Quest Cherokee, LLC 5901 N. Western, Suite 200 Oklahoma City, Ok. 73118 28

Questions 29 Questions 29

Normalized Objective Function • Min prob(up) (Up. Regret / Revenueup(Yup)) + prob(dn) (Dn. Regret Normalized Objective Function • Min prob(up) (Up. Regret / Revenueup(Yup)) + prob(dn) (Dn. Regret / Revenuedn(Ydn)) 30