JINR Exotism of nuclei.pptx
- Количество слайдов: 74
JINR: Current activities and Prospects Nuclear Engineering, Femto- and Nanotechnologies» . Conference is devoted to the 60 th anniversary of Joint Institute for Nuclear Research, Dubna 1 June 29 – July 3, 2015, Peterhof, Saint-Petersburg
JINR – a Centre of Broad International Partnership on the Russian Land - 18 Member States The agreement on the establishment of JINR was signed on 26 March 1956 in Moscow 2 - 6 Associated Members States - about 700 research partners in 60 countries - staff members ~ 5500
JINR’s Science Policy I. 7 -Year Programme: ‘ 2003 – 2009’ (complete and successful realization) 7 -Year Programme ‘ 2010 – 2016’ (final draft approved by the Scientific Council, Sept. 2009 and CPP, Nov. 2009) Road Map (2006 -2017) Basic Scientific Directions Fundamental Science Innovative activities High Energy Physics Nuclear Physics Condensed Matter Physics Education programme Special Economic Zone “Dubna” Public-Private-Partnership UC, DIAS-TH International Univ. “Dubna” 3
JINR’s Large-Scale Basic Facilities NICA layout 2. 3 m 4. 0 m Booster Synchrophasotron yoke MPD 05 g 2 ldn B Collider C = 251 m Nuclotron Spin Physics Detector (SPD) Existing beam lines (solid target exp-s) Krion & Linac LU-20
JINR’s Large-Scale Basic Facilities For the last decade JINR has become one of the leading scientific centres in the world in low energy heavy-ion physics. Number of observed decay chains Element 118 3 Element 116 26 Element 115 4 Element 114 43 Element 113 2 Element 112 8 U 400 isochronous cyclotron DRIBs (I, III) – Dubna Radioactive Ion Beams U 400 MR isochronous cyclotron U 400 and U 400 M isochronous cyclotrons are combined into the accelerator complex – project DRIBs which deals with the production of beams of exotic light neutron-deficient and neutron 5 -rich nuclei in reactions with light ions.
JINR’s Large-Scale Basic Facilities DRIBs-III (2016) Ø Modernization of existing accelerators (U 400 М & U 400) 400 М Ø Creation of the new experimental hall (≈ 2600 м 2) Ø Development and creation of next generation set-ups Ø Creation of high current heavy ion accelerator DC 200 (A≤ 100, E ≤ 10 Me. V ·A, I≥ 10 pµA) NEW EXPERIMENTAL HALL DC 200: MAIN PARAMETERS Pole diameter 4 m Magnetic field level 0. 65÷ 1. 15 T K factor 200 Weight 500 t A/Z range 4÷ 7 Injecting beam potential Up to 100 k. V Power consumption 250 k. W Beam turns separation 10 mm Radial beam bunch size 3 mm Efficiency of beam transferring 60% Total accelerating potential up to ~ 40 MV
JINR’s Large-Scale Basic Facilities The IBR-2 M pulsed reactor of periodic action is included in the 20 -year European strategic programme of neutron scattering research. Parameters Fuel Active core volume Cooling Average power Pulsed power Repetition rate Average flux Pu. O 2 22 dm 3 Pulsed flux liquid Na 2 МW 1500 MW 5 s-1 8· 1012 n/cm 2/s 5· 1015 n/сm 2/s Pulse width (fast / therm. ) 215 / 320 μs Number of channels 14 Fundamental and applied research in condensed matter physics and related fields –– biology, medicine, material sciences, geophysics, engineer diagnostics — aimed at probing the structure and properties of nanosystems, new materials, and biological objects, and at developing new electronic, bio- 7 and information nanotechnologies.
Neutrino and Rare Phenomena Physics NEMO 3 Experiment (at present) (0 n) : 2 n 2 p+2 e. Present Limits (90% CL) : T 1/2(0 nbb) > 5. 8 x 1023 y,
Network and telecommunication two important projects completed 1. JINR - Moscow 20 Gbps telecommunication channel was put into operation. 2. Increase of the JINR Central Information and Computing Complex performance up to 2400 k. SI 2 K and the disk storage capacity up to 500 TB. At present, JINR site is one of the 10 best sites of the worldwide Grid infrastructure (WLCG).
A vitally important task is attracting of young people from all the Member States to science EDUCATIONAL PROGRAMME JINR UNIVERSITY CENTRE More than 300 students and postgraduates from Member States are trained at the UC MSU Chairs: MIPT MEPI MIREA others JINR is a school of excellence for the Member States! “Dubna” International University The UC offers graduate programmes in the fields of: ¨ Elementary Particle Physics ¨ Nuclear Physics DIAS - TH ¨ Theoretical Physics Dubna International ¨ Condensed Matter Physics Advanced School ¨ Technical Physics on Theoretical Physics ¨ Radiobiology
International nature of Dubna SEZ Accelerators for the JINR Member States Dubna Warsaw Prague Cracow Astana Ulaanbaatar Bratislava Sofia Tashkent Havana Microtron Cyclotron
Large International Nanotechnology forums at JINR Organizing - informative forum “Establishment of the International Innovation Nanotechnology Centre in Dubna”. 1 – 2 July 2009 II Advanced courses for CIS countries “Synchrotron and Neutron Studies of Nanosystems” -200928 June – 13 July 2009 12
NUCLEAR TRACK MEMBRANES At the Joint Institute for Nuclear Research an advanced technology has been developed to produce nuclear membranes by using unique multicharged ion cyclotrons. Scheme of nuclear membrane manufacture On the basis of this technology the nuclear membranes can be produced from various polymeric films.
Nanostructures of various modifications Различные формы нано- и микропор в трековой фольге а) d) b) c) e) f) Для сравнения – человеческий волос и микропоры трековой мембраны
Radiation Medicine Medico-technical complex of hadron therapy Proton therapy Beams layout for hadron therapy at the JINR Phasotron γ-therapy
Three Pillars of JINR: Great experience and world-wide recognized traditions of scientific schools. Large and unique park of basic facilities for fundamental and applied research. Status of an international intergovernmental organization.
Welcome to JINR (Dubna) wwwnew. jinr. ru
ПЕНИОНЖКЕВИЧ Ю. Э. Flerov Laboratory Nuclear Reaction JINR, Dubna Exotism of Nuclei LXV International Conference on Nuclear Physics «Nucleus 2015. New Horizons in Nuclear Physics, Nuclear Engineering, Femto- and Nanotechnologies» . Conference is devoted to the 60 th anniversary of Joint Institute for Nuclear Research June 29 – July 3, 2015, Peterhof, Saint-Petersburg
Exotism of Nuclei Introduction Nuclear matter exotism v. Hot nuclei v. Super deformed nuclei v. Super dense nuclei v. Neutron and proton nuclei v. Super heavy nuclei Borders of nuclear stability v. Super neutron – rich nuclei of light elements (10 He) v. Nuclei close to N=20, 28 (28 O, 40 Mg) v. Super heavy nuclei Beams of accelerated exotic nuclei
High temperature matter T hot fluid gas mixed liquid phase Isospin N-Z A Exotic Nuclei density normal nuclear matter saturation density Nuclei Matter Z proton rich nuclei neutron rich nuclei Neutron Star N Neutron Matter
After it has been shown that a nucleus can endure high temperature T~ few Me. V (>1010 K) huge rotation spin up to 66 h a giant deformation axes up to 3: 1 and finally survive….
Physics with Exotic Nuclei Fundamental Symmetries and Interactions Superheavy Elements Parity Violation and Time Reversal in Atoms Sp=0 Applications Test of the Standard Model CKM-Matrix Nuclear Shapes Sn=0 Nuclear Astrophysics Neutron-proton Pairing r-Process and Supernovae New Decay Modes 2 p and n radioactivity rp-Process, Novae and X-ray Bursts New Shell Structure Neutron & proton Drip lines Halos, Skins Molecules Structure & Dynamics of Exotic Nuclei
F. Negoita, D. Guillemaud. Mueller, Yu. Penionzhkevich Phys. Rev C, v. 54, n. 4, 1996
Exotic Nuclei Stable Nuclei ↑Z → N Exotic Nuclei
Lightest neutron- rich nuclei 10 Li Structure =core+xn 9 He 10 He Borromean nuclei core+n+n – bound core+n n+n - unbound … driplines and beyond experimentally accessible, extreme test of models (shell model, shell model in continuum, “ab initio”, cluster, etc)
MISSING-MASS METHOD (binary reactions) A (a, b)B MA+Ma= Mb+MB+Q/c 2 Ра=Рь+Pв; Pa=O Pb=PAMbcosΘ/(MA+Ma)+{2 Mb. MB[EAMa/ (MA+Ma)+Q-E*]/ /(Mb+MB) -[PAMbsinΘ/(MA+Ma)]2}1/2 Mb Pb are measured → Q, E* are calculated →MB is obtained
Tetraneutron Fragmentation 14 Ве (40 АМe. V)
Known β-emitters Nuclides T 1/2, ms xn Pxn, % Predicted β-2 n-emitters Li 8. 5 2 n 3 n 4. 1(4) 1. 9(2) Nucl T 1/2, s Qb B 2 n, Me. V P 2 n, % Y, 1/f 86 0. 90 1. 33 0. 02 4. 0 10 -4 0. 07 3. 78 3. 12 1. 3 10 -5 (0. 10) 3. 79 1. 28 6. 1 10 -10 134 In 0. 1 5. 54 99 2. 7 10 -7 136 Sb 0. 8 2. 25 10. 6 0. 28 3. 3 10 -4 J 0. 2 2. 28 0. 76 5. 3 10 -5 Cs 11 (0. 15) 2. 97 1. 48 1. 3 10 -8 As 14 Be 14. 5 2 n 3 n 0. 80(8) 0. 2(2) 15 10. 4 2 n 0. 4(2) 17 5. 1 2 n 3 n 4 n 11(7) 3. 5(7) 0. 4(3) B B 94 Br 112 Nb 142 150 30 48 2 n 1. 17(16) 32 13. 5 2 n 8(2) 34 5. 5 2 n ~ 50 110 2 n 0. 38(6) 51 2 n 2. 7(7) Na Na Na 98 Rb 100 Rb
NEUTRON DETECTOR “TETRA” FOR TETRANEUTRON SEARCH Configuration “DUBNA-ORSAY” Transition geometry 90 counters 3 He in not optimised geometry with middle Еfficiency of neutron registration. 2 germanium detectors (maximum efficiency of gamma registration) 1 beta detector
4 H ER = 3. 5(5) Мэ. В (ER 5. 3 Мэ. В) Penionzhkevich et all 6 Н ER = 2. 6 0. 5 Мэ. В 6 Н 3 Н+n+n+n , Г = 1. 3 0. 5 Мэ. В Ter-Akopyan et all
9 He H. Bohlen et all. See rapport V. Goldberg
10 He 10 Be(14 C, 14 O)10 He; Q = -41. 2 Мэ. В
Summary on He-isotopes R. Kalpakchieva et all.
Shells in the light nuclei two-proton decay Light very neutron-rich nuclei properties proton & two-proton decays Radioactive ion beams 0. 8 s 0. 1 s beams
Exploring of the Neutron-Drip Line Theoretical predictions: Mass formula (P. Moller et al At. Data Nucl. Tables 59 185 1995) Mass Formula Koura et al RIKEN-AF-NP-394 Predictions disagree with each other The variation of the shell gap and deformation as a function of N and Z could be a major challenger. A particular feature in this region is the progressive development of deformation in spite of the expected effect of spherical stability due to magicity of N=20
Theoretical predictions
EXPERIMENTAL EVIDENCES of PARTICLE STABILITY of 31 F, 34 Ne and 37 Na S. Lukyanov et al Phys. (London) G 28, L 41 (2002) M. Notani et al Phys. Lett. 542 B, 49 (2002) Experimentally established: • The last particle bound Nitrogen isotope in 23 N (N=16), Oxygen isotope is 24 O( N=16) • The neutron drip line extends beyond N=20 and reaches N=24 for 34 Ne and even N=26 for 37 Na isotopes.
Gamma-ray energy of the first 2+ level for even-even nuclei The strength of N=20 and N=28 shells is variable in the region from carbon up to neon. Appearance of new magic number. N=16? A particular feature in this region is the progressive development of prolate deformation in spite of the expected effect of spherical stability due to the magicity of the neutron numbers N=20 and 28. It was argued that the deformation may lead to enhanced binding energies in some of yet undiscovered neutron-rich nuclei.
Potential energy as a function of the deformation for magnesium isotopes
Conclusions: • Drip line is located for O-Na region 24 O , 31 F, 34 Ne 37 Na and 40 Mg are defined the cliff of the neutron drip line • Experimental evidence of progressive development of deformation in spite of the expected effect of spherical stability due to magicity of N=20 and N=28 shells • New magic numbers (N=16 and N=26? ) are appeared far from stability instead of N=20 and N=28 • There are difficulties in theoretical predictions of the neutron-drip line • Qualitative difference for Neutron Drip line Nuclei:
Shell model modification Harmonic Oscillator Shell model around the Vanishing of the magic numbers valley of stability far from stability ? Shell closures far from stability : N=20 : "Island of inversion" for neutron-rich nuclei (ex. 32 Mg) N=28 : Short Lifetime of the 44 S (GANIL), (β 2 (MSU) Deformation, Modification of the "standard" shell model ? . . .
FUSION CROSS SECTIONS FOR THE 4, 6, 8 He+197 Au
Fusion of light neutron rich nuclei produced in the r- process may significantly change the nucleosynthesis scenario
Formation of alpha-condensation Normal nucleus consisting of fermions Bose condensate r 0 = 1. 1 – 1. 2 fm r 0 ~ 2. 0 fm
Possible candidates in light nuclei States close to α-decay thresholds Not reproduced by shell model 7. 65 Me. V, 0+ level of 12 C First experimental task: 9. 64 37. 65 0+ 4. 44 2+ 7. 37 8 Be 0. 0 0+ Схема уровней ядра 12 С +α Get evidence of abnormally large dimensions of 7. 65 Me. V level The state is unstable Образование элементов тяжелее гелия происходит путем резонансного слияния трех альфа-частиц. Увеличение ядерных сил на несколько процентов опустит уровень под порог. Случайность? Антропный принцип?
Perspective region: A ~ 100, Z = N 112 Ba (Tretyakova & Ogloblin) 112 Ba nα Q > 0 for n ~ 7 112 Ba 3α + 100 Sn (double magic core), Q ~ 13 – 14 Me. V 12 C: heavier clustering Proposal: 112 Ba beam and total cross-section measurements See rapport A. Ogloblin
Heaviest Nuclei
D. I. Mendeleev 1834 - 1907 113 Discovered at JINR in 2003 114 Fl Discovered at JINR in 1999 115 Discovered at JINR in 2003 116 Lv 117 Discovered at JINR in 2000 at JINR in 2009 118 Discovered at JINR in 2001
130 2012 β-stability line 287 Fl 277 Cn 291 Lv Island of stability of SHE 200 210 Yu. Oganessian 113 -th Session of the Scientific Council of JINR, Feb. 21, 2013, Dubna
108 лет Поиск в космических лучах 105 лет 1 год 1 день Экспериментальный предел при поисках в природе
Alternative methods for synthesis of SHE More intensive beam is needed No chances for lowintensive beams of accelerated fission fragments like 132 Sn 160 Gd + 186 W is a good testing reaction
Reactions of synthesis SHE Cold fusion Act. +48 Ca Light ions target from “peninsula” target from “continent” Neutron capture Radioactive nuclear beams
fusion - DIC In fligth Facilities new and upgrades 2010 -2025 2012 fragmentatio n Roadmap 2013 2014 2015 2016 2017 2018 2019 2020 RIBF commissioning AGATA au GANIL PHASE 1 construction commissioning PHASE 2 NFS post acc CIME construction commissioning 150 AMe. V ETUDE SPES+ALPI postacc. SPES repos ISOL ESFRI Dubna DRIBs 1, 2 ISOL ‹ 10 A/Me. V Preparatory phase Dubna DRIBs 3 ISOL 30 A/Me. V SITE? 55 2021 2022
RIBs: now 6 He@10 AMe. V ~5 x 108 pps U 400 cyclotron RIBs Facilities @Flerov Lab of Nuclear Reactions, JINR Low energy beam line (ISOL) Acculinna-2 2015 Production target and ECR source ISOL Dubna Radioactive Ion Beams DRIBs-I → DRIBs-III ↔ 2004 2011 -2016 > 2018? U 400 M cyclotron 7 Li, 11 B, 18 O @ 33 AMe. V 6 Li, 15 N @ 46 AMe. V 20 Ne, 32 S @ 52 AMe. V … 78 Kr @ 41 AMe. V Combas DIRECT Acculinna 1996
DRIBs 3 Upgraded U-400 R DC-280 - new accelerator Low Energy RIbeams from U-400 M Cyclotron 3 experiments 7 setups
Thank you for your attention!
International Symposium on Exotic Nuclei ( EXON 2016 ) Kazan, Russia, 6 - 10 September, 2016 The Topics to be discussed are following: Ø Rare processes and decays Ø Methods of production of light exotic nuclei and study of their properties Ø Radioactive beams. Production and research programmes Ø Experimental set-ups and future projects Ø Superheavy elements. Synthesis and properties Organized jointly by JINR, GSI, RIKEN, GANIL, NSCL It is the eight one of a series and is dedicated to the properties of nuclei in extreme states.
Welcome to Kazan (EXON 2016)
Exotic nuclear shapes Superdeformation Hyperdeformation Jacobi shapes quadrupole octupole hexadecapole Triaxial shapes 3 -dimensional rotation Higher-order shapes (with high-rank symmetry) : tetrahedral, octahedral Shape coexistence dynamic deformation vibrations etc. Ш the largest deformations at the highest spins Ш fusion-evaporation with intense n-rich RIB Ш high-spin spectroscopy Ш -ray spectroscopy at S 3 Ш in-flight production of exotic nuclei Ш shape coexistence (at low spin) Ш low-energy Coulomb excitation Ш EXOGAM, EUROBALL, AGATA + VASILISA
A new landscape Far of Stability ~2000 KNOWN NUCLEI protons Stable nuclei less than 300 ! 50 s ce ro p pr 28 20 20 2 8 28 SHE 82 s s oce r r-p A NIT !!! ) G Key nuclei for CO 000 N stellar processes are far stellar processes A I u. . 7 R o R from stability TE 00. . 0 82 ( 5 Limits of existence 50 8 2 s 126 mass, charge & ratio N/Z spin & température extrêmes shapes neutrons The nucleus : a laboratory for fundamental interactions and symmetries Shell structure and Isospin Spin and shapes
Terra Incognita in the region of light very neutron-rich nuclei “Recent observation provides 51 Ar 52 experimental indication that the neutron drip line may be located further towards heavier isotopes in this mass region than is currently believed. ” T. Baumann et al. Nature 449/25, 2007 49 Cl 50 Cl 51 Cl 47 S 48 S 39 Al 40 Al 41 Al 42 Al 43 Al 33 Na 34 Na 35 Na 32 Ne 31 F 22 34 Ne 37 Na 26 50 S 45 P 46 P 47 P 42 Si 43 Si 44 Si 37 Mg 38 Mg Ar 40 Mg 2 8 46 Si 34 45 Al 32 30 FRLDM Mo¨ller, P. , At. Data Nucl. Data Tables 59, 185– 381 (1995). HFB Goriely, S. , et al Nucl. Phys. A 750, 425– 443 (2005
Fission fragments 238 U ( , f) Element Last stable isotope First -n 73 Ni 8 10 -8 28 Ni 64 Ni 30 Zn 70 Zn 32 Ge 76 Ge 34 Se 82 Se 36 Kr 86 Kr 92 Kr 37 Rb 87 Rb 91 Rb 5, 6 10 -2 39 Y 89 Y 97 Y 40 Zr 96 Zr 103 Zr 8 10 -3 (1, 3 c) 42 Mo 100 Mo 109 Mo 3 10 -3 (1, 4 c) 110 Mo 44 Ru 104 Ru 113 Ru 5 10 -3 (3, 0 c) 115 Ru 46 Pd 110 Pd 119 Pd 0, 8 10 -3 (1, 8 c) 48 Cd 116 Cd 127 Cd 50 Sn 124 Sn 133 Sn 1, 5 10 -3 52 Te 130 Te 136 Te 1, 3 10 -2 (19, 0 c) 54 Xe 136 Xe 141 Xe 1, 2 10 -2 (1, 72 c) 56 Ba 138 Ba 78 Zn 0, 49 c Last isotope 74 Ni Eexit=15 Me. V, Y=10 -8 10 -7 (1, 1 c) 75 Ni (0, 23 c) Ntot 1011 c-1 Bn=2, 5 Mev 77 Ni Bn=0 5 10 -5 (0, 10 c) 81 Ni 81 Zn 3 10 -7 (0, 29 c) 82 Zn (0, 13 c) 79 Zn 1, 5 10 -5 (0, 31 c) 87 Zn 1, 7 10 -4 (1, 9 c) 83 Ge 5 10 -5 (2, 0 c) 85 Ge 5 10 -5 (0, 53 c) 88 Ge (0, 15 c) 85 Ge 2, 5 10 -5 (0, 25 c) 97 Ge 6 10 -7 (0, 10 c) 103 Se 87 Se 6, 7 10 -3 91 Se 1, 4 10 -4 (0, 27 c) 94 Se 1, 7 10 -2 (0, 36 c) 95 Kr 1, 5 10 -3 (0, 78 c) 99 Kr (58, 2 c) 4, 9 10 -2 (3, 7 c) 5 10 -6 (0, 57 c) 146 Ba (1, 47 c) 8 10 -3 (2, 0 c) 102 Rb 102 Y 10 -9 (0, 037 c) 2, 5 10 -3 (0, 30 c) 134 Sn (0, 009 c) 102 Rb 10 -8 109 Kr 10 -9 (0, 037 c) 110 Rb 10 -10 120 Y 111 Zr 113 Zr 10 -10 123 Zr 8 10 -3 ( 0, 30 c) 115 Mo 117 Mo 10 -10 125 Mo 3 10 -4 (0, 74 c) 122 Ru 125 Ru 10 -12 131 Ru 0, 5 10 -3 127 Pd 129 Pd 10 -11 137 Pd 10 -7 ( 0, 19 c) 131 Cd 10 -8 139 Cd 120 Pd 106 Y 99 Kr 110 Y 105 Zr 2, 2 10 -3 (1, 0 c) 130 Cd 101 Rb 93 Se 131 Cd 2 10 -3 (1, 05 c) 139 Sn 138 Te 2 10 -3 (1, 4 c) 145 Te 143 Te 10 -6 153 Te 145 Xe 4 10 -4 (0, 9 c) 148 Xe 149 Xe 10 -8 159 Xe 150 Ba 10 -4 (0, 30 c) 10 -10 165 Ba 153 Ba(0, 20 c) 133 Sn 1, 5 10 -3 (1, 47 c) 155 Ba 145 Sn
Зависимость энергии связи нейтрона от изотопспина для легчайших ядер
12 C (7. 65 Me. V, 0+) – «состояние Хойла» Определяет состав Вселенной. 9. 64 37. 65 0+ 4. 44 2+ 0. 0 0+ Схема уровней ядра 12 С 7. 37 8 Be + α Образование элементов тяжелее гелия происходит путем резонансного слияния трех альфа-частиц. Увеличение ядерных сил на несколько процентов опустит уровень под порог. Случайность? Антропный принцип?
Heavy nuclei: partial condensation “Core” + nα No nuclei A nα, Q > 0 in ground states Actinide nuclei (A ≥ 220) have Q > 0 for A nα, n ~ 10. α α α Core α α Dilute surface region of α’s (“α-halo”), if exists, could contain some properties of α-condensation matter Large neutron excess can destroy α-clustering
Основатели ОИЯИ И. М. Франк В. П. Джелепов В. И. Векслер Г. Н. Флеров Н. Н. Боголюбов, Д. И. Блохинцев Л. Инфельд М. Г. Мещеряков Б. Понтекорво Ван Ганчан Г. Неводничански Г. Наджаков
Ø Для объяснения повышенного сечения электромагнитной диссоциации таких ядер предложен новый тип коллективного возбуждения при малых энергиях возбуждения. Эта новая мода возбуждения была названа “мягким дипольным резонансом”. Ø Необходимо получить данные о новых более тяжелых ядрах с гало . Пока известны только несколько ядер с двухнейтронным гало (6 Не, 8 Не, 11 Li, 14 Be и 17 В) и всего два ядра с однонейтронным гало (11 Be и 19 С) . Предсказывается существование многих других галообразных ядер. Ø Важным с точки зрения структуры и стабильности экзотических ядер является вопрос о последовательности заполнения оболочек. Требует также ответа на вопрос, при каких N и Z происходит заполнение оболочек, какое влияние оказывает спаривание и роль оболочек, в том числе деформированных, на стабильность ядер. Ø Зависимости радиусов ядер от нейтронного избытка. Использование вторичных пучков радиоактивных ядер позволит определить изоспиновую зависимость пространственного распределения ядерного вещества для многих экзотических ядер Ø Остается вопрос о корреляциях нуклонов нейтронного гало. Ожидается, что эксперименты с использованием “полной кинематики” могут дать ответ на этот вопрос. Ø Существование динейтрона и тетранейтрона в ядрах с нейтронным гало а также гало из более крупных кластеров
Where one can look for α- condensation Light nuclei: excited states near the thresholds A nα (12 C, 16 O, …) Heavy nuclei: systems of the type “Core” + nα
Experimental dependence of the nuclear temperature excitation energy. Энергия возбуждения (Мe. V/ A) on its The data were obtained at JINR (Dubna), GSI (Germany) and CERN (Switzerland). Inflections in the curves drawn through the experimental points correspond to a phase transition «liquid-gas» .
An Extra Push of Stability For F-Ne-Na Neutron Nuclei
Radioactive nuclear beams opportunities üProduction of exotic (RIB) beams RIB facilities üISOLDE, FAIR, SPIRAL 2, EURISOL, DRIBs RIB physics üNuclear structure üNuclear reactions üNuclear Astrophysics üWhy do we need high intensity RIB?