Jhon Von Neumann ( December 28, 1903 – February 8, 1957)
Neumann biography Jhon Von Neuman - was a Hungarian-born Hungarian American mathematician who made major mathematician contributions to a vast range of fields including set theory, functional analysis, quantu mechanics, ergodic theory, continuous geometry, economics and game theory, computer science, numerical analysis, hydrodynamics (of explosions), and statistics, as well as many other mathematical fields.
The oldest of three brothers, von Neumann was born Neumann János Lajos (in Hungarian the family name comes first) in Budapest, Hungary, to a wealthy non-practicing Jewish family. His father was Neumann Miksa (Max Neumann), a lawyer who worked in a bank. His mother was Kann Margit (Margaret Kann). Von Neumann's ancestors had originally immigrated to Hungary János, nicknamed "Jancsi" (Johnny), was a prodigy who showed aptitudes for from Russia. languages, memorization, and mathematics. He entered the German-speaking Lutheran Fasori Gimnázium in Budapest in the year 1911. Although he attended school at the grade level appropriate to his age, his father hired private tutors to give him advanced instruction in those areas in which he had displayed an aptitude. In 1913, his father was rewarded with ennoblement for his service to the Austro-Hungarian empire. (After becoming semi-autonomous in 1867 Hungary found itself in need of a vibrant mercantile class. ) The Neumann family thus acquiring the Hungarian mark of margittai, or the Austrian equivalent von. Neumann János therefore became János von Neumann, a name that he later changed to the German Johann von Neumann. He received his Ph. D. in mathematics (with minors in experimental physics and chemistry) from Pázmány Péter University in Budapest at the age of 22. He simultaneously earned his diploma in chemical engineering from the ETH Zurich in Switzerland at the behest of his father, who wanted his son to invest his time in a more financially viable endeavour than mathematics. Between 1926 and 1930 he taught as a privatdozent at the University of Berlin, the youngest in its history. By age 25 he had published 10 major papers, and by 30, nearly 36.
Max von Neumann died in 1929. In 1930 von Neumann, his mother, and his brothers emigrated to the United States. He anglicized Johann to John, keeping the Austrianaristocratic surname of von Neumann, whereas his brothers adopted surnames Vonneumann and Neumann (using the de Neumann form briefly when first in the U. S. ). Von Neumann married twice. He married Mariette Kövesi in 1930, just prior to emigrating to the United States. They had one daughter (von Neumann's only child), Marina, who is now a distinguished professor of international trade and public policy at the University of Michigan. The couple divorced in 1937. In 1938 von Neumann married Klari Dan, whom he had met during his last trips back to Budapest prior to the outbreak of World War II. The von Neumanns were very active socially within the Princeton academic community, and it is from this aspect of his life that many of the anecdotes which surround von Neumann's legend originate. Von Neumann wrote 150 published papers in his life; 60 in pure mathematics, 20 in physics, and 60 in applied mathematics. His last work, published in book form as The Computer and the Brain, gives an indication of the direction of his interests at the time of his death.
Von Neumann Architecture The von Neumann architecture, which is also known as the von Neumann model and Princeton architecture, is a computer architecture based on that described in 1945 by the mathematician and physicist John von Neumann and others in the First Draft of a Report on the EDVAC. This describes a design architecture for an electronic digital computer with parts consisting of a processing unit containing an arithmetic logic unit and processor registers; a control unit containing an instruction register and program counter; a memory to store both data and instructions; external mass storage; and input and output mechanisms. The meaning has evolved to be any stored-program computer in which an instruction fetch and a data operation cannot occur at the same time because they share a common bus. This is referred to as the von Neumann bottleneck and often limits the performance of the system.