Скачать презентацию High-Gain Direct-Drive Shock Ignition for the Laser Megajoule Скачать презентацию High-Gain Direct-Drive Shock Ignition for the Laser Megajoule

b507744e3b2edb95778ac94b55dd8632.ppt

  • Количество слайдов: 15

High-Gain Direct-Drive Shock Ignition for the Laser Megajoule: prospects and first results. 100 Density High-Gain Direct-Drive Shock Ignition for the Laser Megajoule: prospects and first results. 100 Density at stagnation FCI 2 Direct Drive @ 2 rings 50 B. Canaud CEA, DAM, DIF France CEA-DAM Ile-de-France 50 Radius (µm) 100 7 th Workshop Direct Drive and Fast Ignition May, 3 -6, 2009 Prague, 1

Collaborators X. Ribeyre, M. Lafon, J. L. Feugeas, J. Breil, G. Schurtz CELIA, Bordeaux Collaborators X. Ribeyre, M. Lafon, J. L. Feugeas, J. Breil, G. Schurtz CELIA, Bordeaux M. Temporal, R. Ramis ETSIA, Madrid, Spain CEA-DAM Ile-de-France 2

Standard LMJ direct drive illumination differs from indirect one by a more isotropic beam Standard LMJ direct drive illumination differs from indirect one by a more isotropic beam layout on the target chamber. a) Baseline LMJ Direct Drive 33. 2° (10 beams) Z DD Z 59. 5° (10 beams) DT ID b) LMJ Indirect Drive 33. 2° 49° 59. 5 ° 78° 102° 120. 5° 131° 146. 8° CEA-DAM Ile-de-France DT 33. 2° (10 beams) 49° (10 beams) 59. 5° (10 beams) 78° (10 beams) Quad Each LMJ beamlet is limited by its power max: Pmax ≤ 2. 5 TW. 3

A few years ago, we proposed a new direct drive configuration with indirect drive A few years ago, we proposed a new direct drive configuration with indirect drive beam layout [*]… a) Baseline LMJ Direct Drive b) LMJ Indirect Drive 33. 2° (10 beams) Z 59. 5° (10 beams) DT DT 33. 2° (10 beams) 49° (10 beams) 59. 5° (10 beams) 78° (10 beams) … but with only 1. 2 MJ of laser energy. CEA-DAM Ile-de-France (*) Canaud B. et al, Plasmas Phys. Cont. Fusion, 49, B 601 (2007). 4

A new 2 -rings baseline(*) high-gain Direct-Drive design has been proposed with focal spot A new 2 -rings baseline(*) high-gain Direct-Drive design has been proposed with focal spot zooming. 1 µm CH Wetted foam 165 µm 1341 µm DT ice 134 µm DTgas Z 49° (45%) 59. 5° (55%) Focal spot zooming increases laser-target coupling narrow efficiency[**]. spot early time large spot late time 1 beam large, 3 narrows on each quad. 100 Adiabat = 3. 5 V=4. 105 m/s Density at stagnation FCI 2 Direct Drive @ 2 rings 50 (**) Canaud B. et al, Nucl. Fus. , 45, L 43 (2005) With zooming and 2 rings, Gain=32 with 1 MJ laser. 50 Radius (µm)100 CEA-DAM Ile-de-France (*) Canaud B. et al, Nucl. Fus. , 47, 1642 (2007) 5

Without zooming, the target is marginally igniting. Thermonuclear gain 100 Adiabat = 3. 5 Without zooming, the target is marginally igniting. Thermonuclear gain 100 Adiabat = 3. 5 V=4. 105 m/s LMJ design with zooming 10 Homothetic target family curve LMJ design without zooming 1 w/o Zooming w/ Zooming 0. 1 : adiabat v : implosion velocity CEA-DAM Ile-de-France 0. 4 0. 6 1 3 Laser energy (MJ) with 3 D ray-tracing 6

Alternative exists to displace the energy threshold towards lower energies, keeping constant the implosion Alternative exists to displace the energy threshold towards lower energies, keeping constant the implosion target parameters ( , v). • Isobaric ignition concerns standard direct drive ignition. Piso T Burn of DT fuel Isobaric Ignition threshold Hot-spot DT fuel radius Burn of Hot spot : adiabatic parameter v : implosion velocity • Non-isobaric ignition reduces the energy threshold for ignition. Pnon iso Piso T where Hot spot DT fuel radius CEA-DAM Ile-de-France (*) Betti R. et al, Phys. Rev. Lett. , 98, 155001 (2007) 7

Non isobaric conditions can be achieved by launching a strong shock at the end Non isobaric conditions can be achieved by launching a strong shock at the end of the implosion. • A low-isentrope compression is obtained by a usual pulse shape. • An additional spike launches a strong shock in the target. Pspike tspike CEA-DAM Ile-de-France 8

Shock can be created by the 33°-ring of the LMJ(*). Z DT 33. 2° Shock can be created by the 33°-ring of the LMJ(*). Z DT 33. 2° (10 beams) 49° (10 beams) 59. 5° (10 beams) } 2 D CHIC simulations of bipolar shock ignition show a good sphericity of the ignitor shock. CEA-DAM Ile-de-France (*) Ribeyre X. et al, Plasmas Phys. Cont. Fusion, 51, 015013 (2009). 9

Fast-ignitor (*) targets can be considered for Shock Ignition (+). Hi. PER(*) baseline target Fast-ignitor (*) targets can be considered for Shock Ignition (+). Hi. PER(*) baseline target DTgas 1040 µm 1 D implosion data Absorbed energy Adiabat Implosion velocity Density Max Areal density max Pspike 300 ps 30 200 ps 20 110 k. J 1 290 km/s 600 g/cm 3 1. 5 g/cm 2 • The target is far below the ignition threshold. 200 ps 10 t (ns) tspike 10 200 Pspike (TW) DT ice 210 µm @ 250 kg/m 3 50 P (TW) 40 100 P=180 TW ETh=20 MJ 9. 5 CEA-DAM Ile-de-France tspike 10 10. 4 (*) Ribeyre X. et al, Plasmas Phys. Cont. Fusion, 50, 025007 (2008). (+) Ribeyre X. et al, Plasmas Phys. Cont. Fusion, 51, 015013 (2009) 10

Marginally igniting standard direct drive target can be triggered by shock ignition (SI). 1 Marginally igniting standard direct drive target can be triggered by shock ignition (SI). 1 µm CH Wetted foam 120 µm 960 µm DT ice 100 µm DTgas Ethermonuclear(MJ) 100 10 P (TW) 150 Pspike 300 ps 100 Baseline Direct Drive = 3. 5 V=400 km/s 200 ps 50 t (ns) 7 1 D implosion data Absorbed energy Density Max Areal density max With SI (@max) Pspike Density Max Areal density max Eth With Shock ignition 1 tspike 200 k. J 500 g/cm 3 1. g/cm 2 190 TW 1700 g/cm 3 1. 27 g/cm 2 11 MJ 0, 1 0, 01 E CEA-DAM Ile-de-France kinetic (MJ) 0, 1 With the spike and 2 rings, G 1 D=50 with 0. 2 MJ absorbed laser. 11

Different targets from the FI-family should be considered for LMJ. 100 KJ-absorbed 200 KJ-absorbed Different targets from the FI-family should be considered for LMJ. 100 KJ-absorbed 200 KJ-absorbed 500 KJ-absorbed 1040 µm DT gas 250 µm DT ice DT gas 2090 µm 1750 µm 1240 µm 210 µm DT ice 850 KJ-absorbed 350 µm DT ice DT gas 420 µm DT ice DT gas =1 v = 290 km/s max= 600 g/cm 3 1 D implosion data Absorbed energy 100 k. J r 1. 2 g/cm 2 1 D implosion data Absorbed energy 200 k. J r 1. 6 g/cm 2 1 D implosion data Absorbed energy 500 k. J r 2 g/cm 2 1 D implosion data Absorbed energy 850 k. J r 2. 24 g/cm 2 Spike Laser Power max 120 TW Abs Intensity 6 e 15 W/cm 2 Spike Laser Power 160 TW Abs Intensity 5 e 15 W/cm 2 Spike Laser Power max 110 TW Abs Intensity 2 e 15 W/cm 2 Spike Laser Power 100 TW Abs Intensity 1 e 15 W/cm 2 Thermonuclear rho r 1. 7 g/cm 2 Energy Th. 18 MJ Thermonuclear rho r 2 g/cm 2 Energy Th. 44 MJ Thermonuclear rho r 2. 2 g/cm 2 Energy Th. 133 MJ Thermonuclear rho r 2. 4 g/cm 2 Energy Th. 260 MJ CEA-DAM Ile-de-France 12

The power in the spike is a key parameter for SI. 100 KJ-absorbed 200 The power in the spike is a key parameter for SI. 100 KJ-absorbed 200 KJ-absorbed 1240 µm 210 µm DT ice 1040 µm DT gas 250 µm DT ice DT gas =1 v = 290 km/s max= 600 g/cm 3 1 D implosion data Absorbed energy 100 k. J r 1. 2 g/cm 2 1 D implosion data Absorbed energy 200 k. J r 1. 6 g/cm 2 Spike Laser Power max 120 TW Abs Intensity 6 e 15 W/cm 2 Spike Laser Power 160 TW Abs Intensity 5 e 15 W/cm 2 Thermonuclear r 1. 7 g/cm 2 Energy Th. 18 MJ Thermonuclear r 2 g/cm 2 Energy Th. 44 MJ CEA-DAM Ile-de-France Need between 200 and 300 TW for ignitor pulses : The 33° rings will produce only 200 TW We need to redefine a target design and to improve the lasertarget coupling efficiency for the ignitor pulses. 13

Low energy for fuel assembly should allow to use only the 49° ring. 100 Low energy for fuel assembly should allow to use only the 49° ring. 100 KJ-absorbed 200 KJ-absorbed 1240 µm 210 µm DT ice 1040 µm DT gas 250 µm DT ice DT gas b) LMJ Indirect Drive Z DT 33. 2° 49° 59. 5° =1 v = 290 km/s max= 600 g/cm 3 1 D implosion data Absorbed energy 100 k. J r 1. 2 g/cm 2 1 D implosion data Absorbed energy 200 k. J r 1. 6 g/cm 2 Spike Laser Power max 120 TW Abs Intensity 6 e 15 W/cm 2 Spike Laser Power 160 TW Abs Intensity 5 e 15 W/cm 2 Thermonuclear r 1. 7 g/cm 2 Energy Th. 18 MJ Thermonuclear r 2 g/cm 2 Energy Th. 44 MJ CEA-DAM Ile-de-France We need more than 200 k. J to assemble the target: the 49° rings should be a good candidate. We need to improve the irradiation uniformity. 14

Summary High gain direct drive Shock ignition on LMJ requires to address several physical Summary High gain direct drive Shock ignition on LMJ requires to address several physical key issues. • Standard direct drive fuel assembly is achievable with a part of X drive beams (rings @ 49° et 59° 5). • Using the ring @ 49° needs well characterize and to improve (if necessary) the irradiation uniformity (PDD, Green House Target, …) • Shock ignition with the last beams (rings @ 33°) should be possible but we may need to redefine a target with lower power ignitor. • Extremely high gains could be achieved on LMJ : E 1 D absorbed~ 0. 2 MJ, Eth ~ 40 MJ In addition, to be done … • 1 D design must be revisited (wetted foam, reduced IFAR, …). • Fully 2 D calculations (with ray-tracing 3 D) have to be done for LMJ. Restrictions • Parametric instabilities driven by the shock ignitor could be problematic. • Hydrodynamic stability of the capsule must be addressed • Unknown Physics (eos, heat conductivity, kinetic effects, …) could be limiting. • … CEA-DAM Ile-de-France 15