a3f9d26dd5250650b6e0def94e6d8ea7.ppt
- Количество слайдов: 42
HALE UAV Preliminary Design SAURON AERSP 402 B Spring 2014 Team: NSFW Nisherag Gandhi Thomas Gempp Doug Rohrbaugh Gregory Snyder Steve Stanek Victor Thomas
Mission Statement To design a High Altitude / Long Endurance (HALE) UAV using alternative fuel sources to support homeland security efforts with a concentration in long term border security.
Design Changes v 1 v 4 v 2 v 5 v 3 v 6
Sauron v 7
Design Changes – Wing and Tail
Design Changes – Landing Gear
Dimensions Parameter Wing Tail Airfoil SM 701 Jouk 0015 Span (ft. ) 128. 6 18. 0 Reference Chord (ft. ) 4. 0 2. 5 Area (ft. 2) 557. 5 45. 0 Cruise CL 0. 66 0. 09 Span Efficiency 1. 01 Max CL 1. 4 Power Generated (k. W) 16. 93 Aspect Ratio 29. 6 Neutral Point Location (ft. ) 13. 4 C. G. Location (ft. ) 13. 2
Wing/Tail Lift Distribution
Structures – Materials • • Hex. Ply M 91 - Epoxy Matrix for primary aerospace structure High residual compression strength after impact (CAI) Supports automated manufacturing Hex. Tow IM 10 - Carbon Fiber 12 k tow Suitable for weaving, prepregging, filament winding, braiding, and pultrusion Enhanced tensile properties Highest commercially available tensile strength * Avg. cost: $45/lb. M 91/IM 10
Structures – Materials Hex. Tow IM 10 Carbon Fiber # of Filaments 12000 Filament Diameter (microns) 4. 4 Tensile Strength (MPa) 6964 Tensile Modulus (GPa) 310 Strain (%) 2. 0 Density (g/cm 3) 1. 79 Epoxy-Fiber (Prepreg) Combination (M 91/IM 10) Theoretical Values Cured Ply Thickness (in) ~ 0. 0072 Fiber Volume (%) ~ 58. 9 Laminate Density (g/cm 3) ~ 1. 4 Laminate Modulus (GPa) ~ 200 Tensile Strength (MPa) ~ 3620
Wing – Spar Design
Wing – Weight and Lift Distribution
Wing – Moment and Stress
Wing – Deflection
Wing Deflection Analysis
H &V Stabilizer Spar Design
Horizontal Stabilizer – Lift Distribution
H. Stabilizer – Moment and Stress
H. Stabilizer – Wing Deflection
Vertical Stabilizer – Weight and Lift Distribution
V. Stabilizer – Moment and Stress
V. Stabilizer - Deflection
Weight Breakdown Aircraft Part Empty Weight (lbs) Wing 126. 89 Fuselage 32. 77 Horizontal Stabilizer 3. 98 Solar Cell 87. 53 Wing Spar 70. 38 Vertical Stab Spar 0. 71 Horizontal Stab Spar 1. 87 4 Motors 16. 00 Fuselage Formers 15. 00 Gear System 40. 00 Total Empty Weight 404. 44 Empty Weight (lbs) 10. 24 Vertical Stabilizer Parameter Total Empty Weight 404. 44 Battery 180. 00 Payload 250. 00 Total 834. 44
Control Surfaces
Aileron Control Surface Area: 3% Pcruise|61 k ft = 13. 8 deg/sec Pstall|61 k ft= 11. 5 deg/sec Required Aileron Deflection =10°
Elevator Control Surface Area: 46. 7% Pitch Rate= 9 deg/sec Required Elevator Deflection= -2. 6° Lift Coefficient, CL Elevator Deflection (°) 0. 1 1. 55 0. 4 0. 90 0. 66 0. 25 1. 0 -0. 74 1. 4 -2. 14
Rudder Control Surface Area: 42. 9% Rudder Deflection: 20° Maximum Sidewash: 10° Max Crosswind: 12. 5 ft/s
Control Surface Demo
Airfoil Selection Wing Airfoil H&V Stabilizer Airfoil
Updated Drag Analysis
Updated Drag Analysis Sea Level 45, 000 feet 61, 000 feet 79, 000 feet Stall Speed (ft/s) 37. 0 83. 9 122. 3 188. 7 Cruise Speed (ft/s) 44. 4 100. 7 146. 8 226. 5 Max Speed (ft/s) 113. 0 191. 5 245. 3 294. 0 Total Drag (lbs) 18. 4 20. 3 22. 5 26. 9 Power Required (k. W) 1. 05 2. 7 4. 3 8. 1 1, 129, 663. 40 626, 856. 80 429, 692. 6 274, 504. 6 0. 0087 0. 0105 0. 0125 Oswald’s Efficiency 0. 76 0. 73 0. 69 0. 63 Max L/D 46. 7 42. 4 38. 2 31. 9 Reynolds’ Number CDo
Updated Power Analysis
Takeoff Parameter Ground Roll [ft] Vtakeoff [ft/s] dab|35 ft [ft] dab|50 ft [ft] Dtotal|35 ft [ft] Dtotal|50 ft [ft] Thrust [lbs] Sea Level Denver Afghanistan
Landing Parameter Va [ft/s] γa [deg] Radius [ft] Flare Height [ft] Flare Speed [ft/s] da 35 ft [ft] da 50 ft [ft] df [ft] VTD [ft/s] Thrust [lbs] Sea Level Denver Afghanistan
Constraint Diagram Original Current
Cost Analysis Fixed Costs for 5 Developmental Aircraft: – Engineering Costs: $29, 869, 717. 35 – Flight Test Ops: $17, 638, 487. 67 – Tooling: $4, 567, 827. 99
Pricing
Pricing Summary 1 10 Design Aircraft 100 500 1000 5 Engineering Costs $ 29, 869, 717. 35 Flight Test Ops $ 17, 638, 487. 67 Tooling Costs $ 4, 567, 827. 99 Manufacturing Costs $ 3, 411, 149. 77 $ 14, 924, 534. 27 $ 65, 298, 136. 52 $ 183, 206, 365. 99 $ 285, 693, 781. 52 Quality Control Costs $ 490, 688. 06 $ 2, 146, 868. 71 $ 9, 393, 025. 19 $ 26, 353, 922. 21 $ 41, 096, 561. 54 Total Materials Costs $ 889, 569. 58 $ 2, 223, 923. 96 $ 74, 872, 106. 51 $ 149, 002, 905. 04 Design Materials Costs $ 741, 307. 99 $ 741, 307. 99 Production Materials Costs $ 148, 261. 60 $ 1, 482, 615. 97 $ 14, 826, 159. 71 $ 74, 130, 798. 53 $ 148, 261, 597. 05 Total Frame Costs $ 60, 725, 386. 10 $ 75, 229, 305. 63 $ 146, 192, 608. 09 $ 340, 366, 373. 41 $ 531, 727, 226. 80 Minimum Price Per UAV $ 60, 725, 386. 10 $ 7, 522, 930. 56 $ 1, 461, 926. 08 $ 680, 732. 75 $ 531, 727. 23 $ 15, 567, 467. 69 * +$2 M per for custom sensory packages
Comparison to Competitors • RQ-1/MQ-1 Predator – Unit Cost: $4. 03 M – 360 Built • MQ-9 Reaper – Unit Cost: $16. 9 M – 104 Built • RQ-4 Global Hawk – Unit Cost: $131. 4 M – 42 Built • Solara 50/60 – Unit Cost: $1 -2 M – N/A Built
14 Days ‘Til Graduation Questions?
Double Camera
Summary Parameter Aspect Ratio Empty Weight Ratio Battery Charge Density (watt-hr. /kg) Solar Cell Efficiency L/D Wing Loading (lbs. /ft. 2) Takeoff Weight Payload (lbs. ) Wing Area (ft. 2) Proj. Wing Span (ft. ) Ref. Chord Length (ft. ) Oswald’s Efficiency Thrust to Weight Ratio Value Parameter Stall Speed (ft. /sec) Cruise Speed (ft. /sec) Total Drag (lbs. ) Max L/D Power Required to Cruise (kw) CL at Cruise Reynolds’s Number at Cruise Sea Level 45, 000 ft. 61, 000 ft.
a3f9d26dd5250650b6e0def94e6d8ea7.ppt