5e15b8146927a5dc4f694317e63a99db.ppt
- Количество слайдов: 35
Grid. Pix – chip post processing Jurriaan Schmitz Vertex 09 Jurriaan Schmitz - chip postprocessing 1
About Jurriaan Schmitz Ph. D. experimental physics 1994 Universiteit van Amsterdam/NIKHEF Senior Scientist at Philips Research 1994 -2002 Full professor at University of Twente 2002 -present Jurriaan Schmitz - chip post-processing Vertex 09 2
Outline § § The concept of wafer post-processing Successes of wafer post-processing Recent results Perspective for radiation imaging Jurriaan Schmitz - chip post-processing Vertex 09 3
Feature size The More than Moore domain of microtechnology “Moore’s Law” (but not exactly) Year of first mass production Jurriaan Schmitz - chip post-processing Vertex 09 4
The More than Moore domain of microtechnology Source: ENIAC Industry & academia Jurriaan Schmitz - chip post-processing Vertex 09 5
More than Moore: new functions Traditional IC: § Computing § Data Storage § Electrical Communication Possible extensions: § High quality passives § Wireless communication § Optical communication § Sensing and Actuating What’s 20*2. 1? Forty-two Jurriaan Schmitz - chip post-processing Vertex 09 6
The fabrication challenge How to combine electronics with sensors, actuators, optical components, …? Majority @ Vertex ’ 09 § Hybrid (solder/bump the components together) § 3 -D integration by die stacking (e. g. 3 D MAPS) § Pre-CMOS: Make component, then make CMOS on the same wafer § Intermediate: Mix the component and CMOS processes § … or post-CMOS: add components on top of a finished CMOS chip Jurriaan Schmitz - chip post-processing Vertex 09 7
MEMS-first monolithic integration: Sandia 3 -D accelerometer Jurriaan Schmitz - chip post-processing Vertex 09 8
Intermediate processing: mix the MEMS and CMOS fabrication NIST gas sensor Twente: Kovalgin, J. Electrochem. Soc. 153 (9) H 181 Jurriaan Schmitz - chip post-processing Vertex 09 9
Wafer post-processing a. Chip fabrication b. Wafer dicing Jurriaan Schmitz - chip post-processing Vertex 09 10
Wafer post-processing a. Chip fabrication b. Post-processing c. Wafer dicing Jurriaan Schmitz - chip post-processing Vertex 09 11
Logistics § Chip fabrication: standard, at any regular (CMOS) fab a. Chip fabrication § Post-processing: special, in a custom CR laboratory b. Post-processing § Wafer dicing, packaging: specialized work like MEMS packaging, e. g. Amkor, Boschman c. Wafer dicing Jurriaan Schmitz - chip post-processing Vertex 09 12
Pros and cons § We do not interfere with the (CMOS) fab process a. Chip fabrication § We can buy good quality chips § We can use any lab for this § Excellent alignment and contacts b. Post-processing § Cheap mass-manufacturing § We must keep the CMOS intact § We have to think the final stages through c. Wafer dicing very carefully! (Standard solutions may fail) Jurriaan Schmitz - chip post-processing Vertex 09 13
Outline § The concept of wafer post-processing § Successes of wafer post-processing § Active pixel sensors § LCo. S § Digital Micro. Mirrors § Recent results § Perspective for radiation imaging Jurriaan Schmitz - chip post-processing Vertex 09 14
Wafer post-processing example: CMOS image sensor (see “MAPS”) Jurriaan Schmitz - chip post-processing Vertex 09 15
Wafer post-processing example: Liquid-Crystal-on-Silicon Cover glass Electrode Liquid crystal Reflector CMOS Jurriaan Schmitz - chip post-processing Vertex 09 16
Wafer post-processing example: Digital Micro. Mirror™ Jurriaan Schmitz - chip post-processing Vertex 09 17
Jurriaan Schmitz - chip post-processing Vertex 09 18
Outline § The concept of wafer post-processing § Successes of wafer post-processing § Recent results § Micromechanical structures § Photodetectors § 3 D electronics § Perspective for radiation imaging Jurriaan Schmitz - chip post-processing Vertex 09 19
UC Berkeley: Si. Ge Resonator on top of CMOS Jurriaan Schmitz - chip post-processing Vertex 09 20
Example: silicon photodiodes on top of CMOS CEA-LETI, IEDM 2006 Jurriaan Schmitz - chip post-processing Vertex 09 21
Rohm corp. : CIGS image sensor on CMOS IEDM 2008 Jurriaan Schmitz - chip post-processing Vertex 09 22
CMOS on top of CMOS! (3 D integration) B. Rajendran et al. , IEEE Trans. El. Dev. 54 (4) 707 A. W. Topol et al. , IBM J. Res. & Dev. 50 (4/5) 491 I. Brunets et al. , IEEE Trans. El. Dev. 56 (8) 1637 Jurriaan Schmitz - chip post-processing Vertex 09 23
CMOS post-processing: game rules Careful treatment of the underlying CMOS: § Temperature ≤ 450 °C § Mild (or no) plasmas § Maintain the H balance in the MOSFET § Limited mechanical stress The CMOS properties must remain unchanged: only then the standard infrastructure can be used. Further reading: Jurriaan Schmitz, Nucl. Instr. Meth. A 576 (2007) 142. Jurriaan Schmitz - chip post-processing Vertex 09 24
Outline § § The concept of wafer post-processing Successes of wafer post-processing Recent results Perspective for radiation imaging § MPGD: In. Grid/Grid. Pix § Future Jurriaan Schmitz - chip post-processing Vertex 09 25
Bottleneck issues in radiation imaging § Power mgt. (cooling) § Yield of interconnects (E/O) § System mass (rad. lengths) What’s the answer? Jurriaan Schmitz - chip post-processing Vertex 09 26
Bottleneck issues in electronics § Power mgt. (cooling) § Yield of interconnects § System mass Solution in electronics: Integration and miniaturization Jurriaan Schmitz - chip post-processing Vertex 09 27
Radiation imaging – gaseous detectors Traditional MWPC In. Grid Particle Cathode planes Anode wires Jurriaan Schmitz - chip post-processing Vertex 09 28
In. Grid: Integrated Grid § § § Use an ASIC as read-out electronics Perfect alignment holes to pixels No dead areas Geometrical freedom No manual manufacturing Cathode Grid Supporting pillar Pixel pad CMOS chip Jurriaan Schmitz - chip post-processing Vertex 09 29
The microsystem Al membrane (-400 -450 V) SU-8 pillar (50 μm high) a-Si protection Medipix 2 chip (or Timepix) Jurriaan Schmitz - chip post-processing Vertex 09 30
Process flow – suspended membrane Spark protection 50 µm SU-8 coating and exposure 0. 8 µm Al deposition + patterning § Deposit spark protection film: a-Si or Silicon-rich nitride § SU-8 photoresist for pillars § Al deposition is critical: unexposed SU-8 (yellow) should not crosslink § Al patterning also critical: lithography at room temperature to protect SU-8 development § Membrane release at end, after wafer dicing (fragility) Jurriaan Schmitz - chip post-processing Vertex 09 31
The In. Grid detector § § § 2 -D and 3 -D mip-tracking shown Good energy resolution (11. 7% FWHM for 55 Fe in Ar/CH 4) Micromegas built on a chip, as well as GEM Multiple electrodes shown Beam tests for mip-tracking and transition radiation Jurriaan Schmitz - chip post-processing Vertex 09 32
The next step: other radiation imagers § Semiconductors on a chip § Amorphous silicon: shown (e. g. Wyrsch et al. ) § Polycrystalline silicon: first steps made § CIGS: rad-hard!! § Integrate components for optical communication? § Scintillator on an APS? MCP on a chip? Vallerga et al. Melai et al. Sigma. Digital. Xray Jurriaan Schmitz - chip post-processing Vertex 09 33
Conclusions What can we build on top of CMOS? § Light projectors § CMOS imagers § More electronics § Radiation imaging detectors § … There’s plenty of room at the top! Jurriaan Schmitz - chip post-processing Vertex 09 34
Thanks… My low-temperature coworkers: § Tom Aarnink, Victor Blanco Carballo, Arjen Boogaard, Ihor Brunets, Jisk Holleman, Alexey Kovalgin, Jiwu Lu, Joost Melai, Cora Salm, Sander Smits, Rob Wolters, Yevgen Bilevych, Marten Bosma, Max Chefdeville, Harry van der Graaf, Martin Fransen, Jan Visschers, Jan Timmermans Our sponsors: § The Dutch Technology Foundation, FOM § NXP Research, Adixen/Alcatel, ASM International …and the Medipix consortium Jurriaan Schmitz - chip post-processing Vertex 09 35


