Скачать презентацию geologic hazards and space geodesy part 4 integrating Скачать презентацию geologic hazards and space geodesy part 4 integrating

fdaf677514a5368b1216490e65822e0a.ppt

  • Количество слайдов: 19

geologic hazards and space geodesy part 4: integrating GPS into warning and response geologic hazards and space geodesy part 4: integrating GPS into warning and response

Can we design a better tsunami alert system? § Reduce false alarms § don’t Can we design a better tsunami alert system? § Reduce false alarms § don’t cause panic; educate people on how to react § Warn everybody - needs to be in the right language § Broadcast § § § Radio TV Satellite telecommunication Cell phone GPS § Sirens or Loudspeakers? One can trigger the next so as to propagate the alarm rapidly (not backwards, don’t want to jam comm’s with a backpropagating notification) § Buoy system can directly notify and propagate alert signal through satellite and all other telecomm links immediately § Airplane, blimp or helicopter with loudspeakers or sign towed behind it?

Can we design a better tsunami evacuation, safety and survival system? (some of the Can we design a better tsunami evacuation, safety and survival system? (some of the solutions need to work even for very low-lying islands and other coastal plain areas) § Underground bunker (waterproof hatches like a submarine) § Strong tall buildings with extra capacity stairwells for people to run up very quickly to higher levels where it’s safe, and lots of emergency supplies, water and food stored up high § Could have a big red flashing light and siren on top § Boats with large capacity that can launch quickly and get out into deep water very fast § Airplanes with large capacity that can get airborne quickly § Helicopters with tremendous lifting capacity so that they can sling-load many people to safe high ground, load after load § Special roads heading straight to high ground, which could have special high-capacity cars to move quickly and make many trips back and forth to shuttle many people

Basic warning elements • Know an event happened as fast as possible • Know Basic warning elements • Know an event happened as fast as possible • Know the location of an event • Know the size of an event • Know the probability that an event produced a tsunami

AUTOMATED TAGGING AND REAL-TIME DAMAGE Distribution MAPS Automated Tagging and Real-Time Damage. DISTRIBUTION Maps AUTOMATED TAGGING AND REAL-TIME DAMAGE Distribution MAPS Automated Tagging and Real-Time Damage. DISTRIBUTION Maps Multiple sensor package: • Acceleration / Velocity • Displacement (GPS) • Rotation (tilt-meter) FRC. Linear Nonlinear DIS P. Permanent displacement Pre-earthquake: ØReference static displacement ØReference static rotation ØMean and variance of dynamic characteristics Post-earthquake: During earthquake: ØChanges in dynamic characteristics ØHysteretic behavior ØDamage initiation ØPermanent static displacement ØPermanent static rotation ØMean and variance of dynamic characteristics

GPS real-time displacement 1 -Hz data GPS real-time displacement 1 -Hz data

Caltech Tectonic Observatory GPS Array Caltech Tectonic Observatory GPS Array

GPS buoy systems • • • NOAA DART buoys are expensive and high maintenance GPS buoy systems • • • NOAA DART buoys are expensive and high maintenance GPS can be used for large numbers of low-cost buoys to complement existing system Nav. Com-AXYS contract for US Navy (NAVOCEANO); 2 cm inshore, 10 cm offshore NOAA-USGS testing program for warning application Tie in with existing earthquake and weather monitoring and alerts

Other data sets Other data sets

Basic response elements • Know the location of damage • Know the extent of Basic response elements • Know the location of damage • Know the extent of damage • Know the type of damage and therefore the response required

GPS results • GPS surveys before and after the earthquake are differenced to obtain GPS results • GPS surveys before and after the earthquake are differenced to obtain 3 D vectors of permanent deformation (courtesy of CESS, SEIRES) • Deformation data are modeled to obtain slip on the fault plane, especially in areas complementary to seismology

Bilham et al. , in press SRL Bilham et al. , in press SRL

Remote sensing • (a) Pre-earthquake and (b) postearthquake Advanced Space-borne Thermal Emission and Reflection Remote sensing • (a) Pre-earthquake and (b) postearthquake Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) images of North Sentinel Island, showing emergence of the coral reef surrounding the island. (c) Pre-earthquake and (d) post-earthquake ASTER images of a small island off the northwest coast of Rutland Island, 38 km east of North Sentinel Island, showing submergence of the coral reef surrounding the island. The “pivot line” must run between North Sentinel and Rutland islands. Note that the scale for the North Sentinel Island images differs from that for the Rutland Island images. Scale bars as follows: left (a-b) 0 -6 km; right (c-d) 0 -1 km. (ASTER images courtesy of NASA/JPL from Meltzner et al. , 2006).

What do GPS and Before & After images tell us? • Derive damage assessment What do GPS and Before & After images tell us? • Derive damage assessment maps: – Indicate areas most severely affected by shaking & inundation – Provide rapid and comprehensive information needed in support of decisions on prioritization for resource deployment – Help with vital logistical aspects of relief efforts (e. g. , Can ports be used for shipping? Are bridges knocked out? Where are survivors? ) • Validate & verify rapidly estimated finite-fault slip models (e. g. , predicted vs. observed coastal uplift & submergence) – provide important input data to refine fault source models • • • Tsunami inundation map data as input to tsunami propagation models Flood data to assess saline infiltration and damage to irrigable lands and water supplies; is flooding permanent or transient? Commercial and other imagery and analysis tools have reached a new level of utility with recent disaster responses – still require calibration, ground-truthing, validation, and algorithm & software development – promising for future rapid assessment & quantification

California Prototype GPS fault slip sensor; up to 10 Hz Spans the San Andreas California Prototype GPS fault slip sensor; up to 10 Hz Spans the San Andreas fault near Gorman, California

San Andreas - instrument major lifeline infrastructure crossings San Andreas - instrument major lifeline infrastructure crossings

Cajon Pass I-15 Fault Crossing Cajon Pass I-15 Fault Crossing

California California