f0a9485b0a1f687daf2fa94b5b38bf40.ppt
- Количество слайдов: 26
Future LIGO Interferometers Moriond 07 La Thuille, Italy LIGO – G 070055 -00 -R Rana Adhikari Caltech 1
Advanced LIGO mission: detect gravitational waves and initiate GW astronomy Next detector » Should have assured detectability of known sources » Should be at the limits of reasonable extrapolations of detector physics and technologies » Must be a realizable, practical, reliable instrument » Daily gravitational wave detections Advanced LIGO 2 LIGO – G 070055 -00 -R
The next several years Other interferometers in operation (GEO, Virgo) NOW 4 Q ‘ 06 4 Q ‘ 05 S 5 § 4 Q ‘ 07 4 Q ‘ 08 4 yrs 4 Q ‘ 09 ~2 years 4 Q ‘ 10 S 6 Between now and Adv. LIGO, there is some time to improve… 1) ~Few years of hardware improvements + 1 ½ year of observations. 1) Factor of ~2. 5 in noise, factor of ~10 in event rate. 2) 3 -6 interferometers running in coincidence ! Enhanced LIGO details in “Lessons from LIGO-I” talk on Thursday LIGO – G 070055 -00 -R Adv LIGO
Advanced LIGO Sketch 40 KG FUSED SILICA TEST MASSES ACTIVE SEISMIC ISOLATION FUSED SILICA, MULTIPLE PENDULUM SUSPENSION 180 W LASER, MODULATION SYSTEM PRM BS ITM ETM SRM PD T ~ 1% Power Recycling Mirror Beam Splitter Input Test Mass End Test Mass Signal Recycling Mirror Photodiode 4 LIGO – G 070055 -00 -R
Parameter Equivalent strain noise, minimum Neutron star binary inspiral range Omega GW Interferometer configuration Laser Power in Arm Cavities Test masses Seismic wall frequency Beam size Test mass Q Suspension fiber Q LIGO – G 070055 -00 -R LIGO I Adv LIGO 3 x 10 -23/rt. Hz 2 x 10 -24/rt. Hz 15 Mpc 175 Mpc 3 x 10 -6 1. 5 -5 x 10 -9 Power-recycled MI w/ FP arm cavities LIGO I, plus signal recycling 15 k. W 800 k. W Fused silica, 10 kg Fused Silica, 40 kg 40 Hz 10 Hz 4 cm 6 cm Few million 200 million Few thousand ~30 million
Anatomy of the projected Adv LIGO detector performance Newtonian background, estimate for LIGO sites Seismic ‘cutoff’ at 10 Hz Suspension thermal noise Test mass thermal noise 10 -21 10 -22 Initial LIGO 10 -23 Advanced LIGO Unified quantum noise dominates at most frequencies for full 10 -24 power, broadband tuning NS-NS Tuning 10 Hz 100 Hz 1 k. Hz 6 LIGO – G 070055 -00 -R
Advanced LIGO Design Features 40 KG FUSED SILICA TEST MASSES ACTIVE SEISMIC ISOLATION FUSED SILICA, MULTIPLE PENDULUM SUSPENSION 180 W LASER, MODULATION SYSTEM PRM BS ITM ETM SRM PD Power Recycling Mirror Beam Splitter Input Test Mass End Test Mass Signal Recycling Mirror Photodiode 7 LIGO – G 070055 -00 -R
Why use Signal Recycling? no signal recycling Pbs = 10 Pbs Principal advantage of signal recycling is in power handling LIGO – G 070055 -00 -R
Ultra Stable Laser High power laser: 180 Watts Front end high power, injectionlocked stage 12 W Master Oscillator 180 W Alternative front end 35 W (relative power fluctuations ~ 2 x 10 -9) Laser frequency stabilization Laser power stabilization » Wideband frequency actuation for further stabilization (~ 10 -7 Hz/r. Hz) Pre-mode cleaner for spatial clean-up and high-frequency filtering Work lead by AEI (Hanover) in collaboration with LZH (Laser Zentrum Hanover) LIGO – G 070055 -00 -R 9
ACTIVE SEISMIC ISOLATION Test Masses 40 KG SAPPHIRE TEST MASSES ACTIVE ISOLATION FUSED SILICA, MULTIPLE PENDULUM SUSPENSION QUAD SILICA SUSPENSION 200 W LASER, MODULATION SYSTEM 10 LIGO – G 070055 -00 -R
Core Interferometer Optics 40 kg Test Masses: 34 cm x 20 cm Large beam size on test masses (6. 0 cm radius), to reduce thermal noise 40 kg PRM T = 7% Challenges: Substrate polishing Dielectric coatings Metrology Substrate procurement LIGO – G 070055 -00 -R BS: 37 cm x 6 cm Compensation plates: 34 cm x 6. 5 cm ITM T = 0. 5% Round-trip optical loss: 75 ppm max SRM T = 7% Recycling Mirrors: 26. 5 cm x 10 cm 11
Substrates » Fused silica: Heraeus (for low absorption) or Corning » Specific grade and absorption depends on optics » ITMs and BS most critical (need low absorption and good homogeneity) Compensation Polishing » Low micro-roughness (< 1 angstrom-rms) » Low residual figure distortion (< 1 nm-rms over central 120 mm diameter) » Accurate matching of radii-of-curvature » Surfaces for attachment of suspension fibers Core Optics Dielectric coatings before » Low absorption (0. 5 ppm or smaller) » Low scatter ( < 30 ppm) » Low mechanical loss (< 2 e-4) In-house Metrology » ROC, figure distortion, scattering, absorption LIGO – G 070055 -00 -R after 12
Seismic Isolation 40 KG SAPPHIRE TEST MASSES ACTIVE ISOLATION COATINGS QUAD SILICA SUSPENSION 200 W LASER, MODULATION SYSTEM 13 LIGO – G 070055 -00 -R
14 LIGO – G 070055 -00 -R
Seismic Isolation: Active Platform Requirement BSC Chamber Value Payload Mass 800 kg Range ± 1 mm, ± 0. 5 mrad 3 x 10 -13 m/√Hz @10 Hz 10 nrad Table Noise Angular Noise 15 LIGO – G 070055 -00 -R
Quad Suspensions Quadruple pendulum: » ~107 attenuation @10 Hz Magnets » Controls applied to upper layers; noise filtered from test masses Electrostatic q Seismic isolation and suspension together: » 10 -19 m/rt. Hz at 10 Hz LIGO – G 070055 -00 -R Fused silica fiber w Welded to ‘ears’, hydroxy-catalysis bonded to optic
GW Readout 40 KG SAPPHIRE TEST MASSES ACTIVE ISOLATION COATINGS QUAD SILICA SUSPENSION 200 W LASER, MODULATION SYSTEM 17 LIGO – G 070055 -00 -R
@ the Caltech 40 m Lab LIGO – G 070055 -00 -R
@ the Caltech 40 m Lab LIGO – G 070055 -00 -R
@ the Caltech 40 m Lab DC Readout Beamline Controls and Noise Characterization Prototype PD ELECTRONICS MMT 1 OMC Tip/Tilt RF PICKOFF Squeezer Pickoff LIGO – G 070055 -00 -R MMT 2
Projected Noise Sources Seismic Noise 109 Suspension Thermal Noise 102 LIGO – G 070055 -00 -R Initial LIGO Quantum Optical Noise is Tunable!
Opto-mechanical Spring Radiation pressure: F= 2 P/c Detuned Cavity -> d. F/dx Measured Transfer Functions from the 40 m prototype • ½ MW in the arms -> • ‘Optical Bar’ detector • ~75 Hz unstable optomechanical resonance • High Bandwidth servos Optical Spring stiffness ~ 107 N/m BMW Z 4 ~ 104 N/m Angular spring resonance ~ 2 Hz LIGO – G 070055 -00 -R
NS/NS Binary Area proportional to SNR Most of the sensitivity comes from a band around 50 Hz LIGO – G 070055 -00 -R 50 Hz
There’s more… End Test Mass Arm Cavity Q Power Recycling mirror 2 k. W Laser Input Test Mass 500 k. W 125 W 50/50 beam splitter Signal Cavity Q GW signal LIGO – G 070055 -00 -R Signal Recycling mirror
30% Sensitivity Improvement Low laser power! Lower Arm Cavity finesse Lower SRC finesse LIGO – G 070055 -00 -R
Advanced LIGO Initial instruments, data helping to establish the field of interferometric GW detection Advanced LIGO promises exciting astrophysics Substantial progress in R&D, design Enhanced LIGO starts now!! Installation in 2011, Data ~2013 -2014 Steady stream of gravitational wave signals 26 LIGO – G 070055 -00 -R


