Скачать презентацию Функции y tgx и y ctgx Скачать презентацию Функции y tgx и y ctgx

График функций тангенс, котангенс.ppt

  • Количество слайдов: 16

Функции y = tgx и y = ctgx, их свойства и графики Функции y = tgx и y = ctgx, их свойства и графики

Определение Тангенсом угла α называют число, равное отношению sin α к cos α, обозначают Определение Тангенсом угла α называют число, равное отношению sin α к cos α, обозначают tg α, т. е. Тангенс определён для всех углов α, кроме тех, для которых косинус равен нулю Для любого угла α ≠ π/2 + πk, kЄZ существует, и притом единственный tg α

y Ось тангенсов +∞ 120° 180° 1 x - 45° не существует Тангенс может y Ось тангенсов +∞ 120° 180° 1 x - 45° не существует Тангенс может принимать любые значения от – ∞ до + ∞ х=1 –∞

Определение Котангенсом угла α называют число, равное отношению cos α к sin α, обозначают Определение Котангенсом угла α называют число, равное отношению cos α к sin α, обозначают сtg α, т. е. Котангенс определён для всех углов α, кроме тех, для которых синус равен нулю Для любого угла α ≠ πk, kЄZ существует, и притом единственный сtg α

Ось котангенсов Y –∞ +∞ 120° у=1 180° 0° X 45° Не существует Котангенс Ось котангенсов Y –∞ +∞ 120° у=1 180° 0° X 45° Не существует Котангенс может принимать любые значения от – ∞ до + ∞

Построение графика функции y = tg x, если х Є [ π ∕ 2; Построение графика функции y = tg x, если х Є [ π ∕ 2; π ∕ 2 ] y у = tg x х 0 1 у=tg x 0 ±π ∕ 6 x -1 ≈ ± 0, 6 ±π ∕ 4 ± 1 ±π ∕ 3 ≈ ± 1, 7 ±π ∕ 2 Не существ.

Построение графика функции y = tg x. y у=tg x 1 x -1 Построение графика функции y = tg x. y у=tg x 1 x -1

Свойства функции y=tg x. y 1 у=tg x x 1 Нули функции: tg х Свойства функции y=tg x. y 1 у=tg x x 1 Нули функции: tg х = 0 при х = πn, nєZ у>0 при хє (0; π/2) и при сдвиге на πn, nєZ. у<0 при хє (-π/2; 0) и при сдвиге на πn, nєZ.

Свойства функции y=tg x. у=tg x y Асимптоты 1 x -1 При х = Свойства функции y=tg x. у=tg x y Асимптоты 1 x -1 При х = π ∕ 2+πn, nєZ - функция у=tgx не определена. Точки х = π ∕ 2+πn, nєZ – точки разрыва функции.

Запишите все свойства функции y = tg x. 1. Область определения: 2. Множество значений Запишите все свойства функции y = tg x. 1. Область определения: 2. Множество значений функции: 3. Периодическая, Т= 4. Нечётная функция 5. Возрастает на всей области определения. 6. Нули функции у = 0 при х = 7. у > 0 при хє и при сдвиге на 8. у < 0 при хє и при сдвиге на 9. При х = - функция у = tgx не определена. Имеет точки разрыва графика

у 1 х - - 3 2 y = tgx + a - - у 1 х - - 3 2 y = tgx + a - - 0 2 -1 y = tgx 3 2 2 y = tgx – b

у 1 х - - 3 2 - y = tgx - 0 2 у 1 х - - 3 2 - y = tgx - 0 2 -1 3 2 y = tg(x – a) 2

у 1 х - - 3 2 - y = tgx - 0 2 у 1 х - - 3 2 - y = tgx - 0 2 -1 3 2 2 y = Itgx. I

Функция y = ctg x 1. 2. 3. 4. 5. у=ctg x Область определения Функция y = ctg x 1. 2. 3. 4. 5. у=ctg x Область определения данной функции – все действительные числа, кроме чисел х=πk, k Z. Область значений функции – все действительные числа. Функция убывает на интервалах Функция нечетная, график ее симметричен относительно начала координат. Функция периодическая, ее наименьший положительный период равен π. у 1 - х -π 0 -1 π

Задача № 1. Найти все корни уравнения tgx = 1, принадлежащих промежутку –π ≤ Задача № 1. Найти все корни уравнения tgx = 1, принадлежащих промежутку –π ≤ х ≤ 3π ∕ 2. Решение. 1. Построим графики у=tg x y у=1 −π 1 х1 0 -1 х2 функций у=tgx и у=1 2. х1= − 3π∕ 4 х2= π∕ 4 x х3= 5π∕ 4 х3 3π/2 π

Задача № 2. Найти все решения неравенства tgx < − 1, принадлежащие промежутку –π Задача № 2. Найти все решения неравенства tgx < − 1, принадлежащие промежутку –π ≤ х ≤ 2π. 1. Построим графики функций у = tgx и у = − 1 у=tg x y ( −π/4 ////// 1 0 3π/4 ////// -1 7π/4 //// ) 2. хϵ(−π/2; −π∕ 4); хϵ(π/2; 3π∕ 4); хϵ(3π/2; 7π∕ 4) x у = − 1