Скачать презентацию Features of the maxillofacial area MFA injuries Classification Скачать презентацию Features of the maxillofacial area MFA injuries Classification

7532c9c10f193c509cff7a1f0fee9748.ppt

  • Количество слайдов: 77

Features of the maxillofacial area (MFA) injuries. Classification, debridement of soft tissue wounds MFA. Features of the maxillofacial area (MFA) injuries. Classification, debridement of soft tissue wounds MFA. Nongunshot damage of the lower and upper jaws: Anatomy injury, pathogenesis, classification, statistics, symptoms, diagnosis, transportation immobilization. Damage to the zygomatic bone, nasal bones in peacetime: classification, incidence, clinical features, diagnosis and treatment.

Maxillofacial trauma Management of traumatized patient 2 Maxillofacial trauma Management of traumatized patient 2

Organization of trauma services triage decisions are crucial in determining individual patients survival l Organization of trauma services triage decisions are crucial in determining individual patients survival l Pre-hospital care (field triage) Care delivered by fully trained paramedic in maintaining airway, controlling cervical spine, securing intravenous and initiating fluid resuscitation l Hospital care (inter-hospital triage) Senior medical staff organized team to ensure that medical resources are deployed to maximum overall benefit l Mass casualty triage 3

Primary survey Ⓐ Airway maintenance with cervical control spine Ⓑ Breathing and ventilation Ⓒ Primary survey Ⓐ Airway maintenance with cervical control spine Ⓑ Breathing and ventilation Ⓒ Circulation with hemorrhage control Ⓓ Disability assessment of neurological status Ⓔ Exposure and complete examination of the patient 4

Airway l Satisfactory airway signifies the implication of breathing and ventilation and cerebral function Airway l Satisfactory airway signifies the implication of breathing and ventilation and cerebral function l Management of maxillofacial trauma is an integral part in securing an unobstructed airway l Immobilization in a natural position by a semirigid collar until damaged spine is excluded 5

Sequel of facial injury Obstruction of airway asphyxia Cerebral hypoxia Brain damage/ death Is Sequel of facial injury Obstruction of airway asphyxia Cerebral hypoxia Brain damage/ death Is the patient fully conscious? And able to maintain adequate airway? Semiconscious or unconscious patient rapidly suffocate because of inability to cough and adopt a posture that held tongue forward 6

Breathing and ventilation l Chest injuries: Pneumothorax, haemopneumothorax, flail segments, reputure daiphram, cardiac tamponade Breathing and ventilation l Chest injuries: Pneumothorax, haemopneumothorax, flail segments, reputure daiphram, cardiac tamponade signs Clinical Deviated trachea Absence of breath sounds Dullness to percussion Paradoxical movements Hyper-response with a large pneumothorax Muffled heart sounds Radiographical Loss of lung marking Deviation of trachea Raised hemi-diaphragm Fluid levels Fracture of ribs 7

Circulation Circulatory collapse leads to low blood pressure, increasing pulse rate and diminished capillary Circulation Circulatory collapse leads to low blood pressure, increasing pulse rate and diminished capillary filling at the periphery Patient resuscitation Restoration of cardio-respiratory function Shock management Replacement of lost fluid 8

Glasgow coma scale (GCS) (Teasdale and Jennett, 1974) Eye opening Motor response Verbal response Glasgow coma scale (GCS) (Teasdale and Jennett, 1974) Eye opening Motor response Verbal response Spontaneous 4 Move to command 6 Converse 5 To speech 3 Localizes to pain 5 Confused 4 To pain 2 Withdraw from pain 4 Gibberish 3 none 1 flexes 3 grunts 2 Extends 2 none 1 none Score 8 or less indicates poor prognosis, moderate head injury between 9 -12 and mild refereed to 13 -15 1 9

Exposure All trauma patient must be fully exposed in a warm environment to disclose Exposure All trauma patient must be fully exposed in a warm environment to disclose any other hidden injuries When the airway is adequately secured the second survey of the whole body is to be carried out for: l l Accurate diagnosis Maintenance of a stable state Determination of priorities in treatment Appropriate specialist referral 10

Head injury Many of facial injury patients sustain head injury in particular the mid Head injury Many of facial injury patients sustain head injury in particular the mid face injuries l Open l Closed it is ranged from Mild concussion to brain death 11

Signs and symptoms of head injury Loss of conscious OR l History of loss Signs and symptoms of head injury Loss of conscious OR l History of loss of conscious l History of vomiting l Change in pulse rate, blood pressure and pupil reaction to light in association with increased intracranial pressure l l Assessment of head injury (behavioral responses “motor and verbal responses” and eye opening) l l Skull fracture Skull base fracture (battle’s sign) Temporal/ frontal bone fracture Naso-orbital ethmoidal fracture 12

slow reaction and fixation of dilated pupil denotes a rise in intra-cranial pressure Rise slow reaction and fixation of dilated pupil denotes a rise in intra-cranial pressure Rise in intercranial pressure as a result of acute subdural or extradural hemorrhage deteriorate the patient’s neurological status Apparently stable patient with suspicion of head injury must be monitored at intervals up to one hour for 24 hour after the trauma 13

Hemorrhage Acute bleeding may lead to hemorrhagic shock and circulatory collapse l Abdominal and Hemorrhage Acute bleeding may lead to hemorrhagic shock and circulatory collapse l Abdominal and pelvis injury; liver and internal organs injury (peritonism) l Fracture of the extremities (femur) 14

Preliminary treatment in complex facial injury l Soft tissue laceration (8 hours of injury Preliminary treatment in complex facial injury l Soft tissue laceration (8 hours of injury with no delay beyond 24 hours) l Support of the bone fragments l Injury to the eye As a result of trauma, 1. 6 million are blind, 2. 3 million are suffering serious bilateral visual impairment and 19 million with unilateral loss of sight (Macewen 1999) l l l Ocular damage Reduction in visual acuity Eyelid injury 15

Prevention of infection Fractures of jaw involving teeth bearing areas are compound in nature Prevention of infection Fractures of jaw involving teeth bearing areas are compound in nature and midface fracture may go high, leading to CSF leaks (rhinorrhoea, otorrhoea) and risk of meningitis, and in case of perforation of cartilaginous auditory canal Diagnosis: Laboratory investigation, CT and MRI scan l Management: l – – – Dressing of external wounds Closure of open wounds Reposition and immobilization of the fractures Repair of the dura matter Antibacterial prophylaxis (as part of the general management (Eljamal, 1993) 16

Control of pain Displaced fracture may cause severe pain but strong analgesic ( Morphine Control of pain Displaced fracture may cause severe pain but strong analgesic ( Morphine and its derivatives) must be avoided as they depress cough reflex, constrict pupils as they mask the signs of increasing intracranial pressure Management: ☞ Non-steroidal anti-inflammatory drugs can be prescribed (Diclofenac acid) ☞ Reduction of fracture ☞ sedation 17

In patient care l Necessary medications l Diet (fluid, semi-fluid and solid food) intake In patient care l Necessary medications l Diet (fluid, semi-fluid and solid food) intake and output (fluid balance chart) l Hygiene and physiotherapy l Proper timing for surgical intervention 18

Anatomy Anatomy

Anatomy Anatomy

Physical Examination l Inspection of the face for asymmetry. l Inspect open wounds foreign Physical Examination l Inspection of the face for asymmetry. l Inspect open wounds foreign bodies. l Palpate the entire face. – Supraorbital and Infraorbital rim – Zygomatic-frontal suture – Zygomatic arches

Physical Examination Inspect the nose for asymmetry, telecanthus, widening of the nasal bridge. l Physical Examination Inspect the nose for asymmetry, telecanthus, widening of the nasal bridge. l Inspect nasal septum for septal hematoma, CSF or blood. l Palpate nose for crepitus, deformity and subcutaneous air. l Palpate the zygoma along its arch and its articulations with the maxilla, frontal and temporal bone. l

Physical Examination Check facial stability. l Inspect the teeth for malocclusions, bleeding and step-off. Physical Examination Check facial stability. l Inspect the teeth for malocclusions, bleeding and step-off. l Intraoral examination: l – – l Manipulation of each tooth. Check for lacerations. Stress the mandible. Tongue blade test. Palpate the mandible for tenderness, swelling and step-off.

Physical Examination l Check visual acuity. l Check pupils for roundness and reactivity. l Physical Examination l Check visual acuity. l Check pupils for roundness and reactivity. l Examine the eyelids for lacerations. l Test extra ocular muscles. l Palpate around the entire orbits. .

Physical Examination l Examine the cornea for abrasions and lacerations. l Examine the anterior Physical Examination l Examine the cornea for abrasions and lacerations. l Examine the anterior chamber for blood or hyphema. l Perform fundoscopic exam and examine the posterior chamber and the retina.

Physical Examination l Examine and palpate the exterior ears. l Examine the ear canals. Physical Examination l Examine and palpate the exterior ears. l Examine the ear canals. l Check nuero distributions of the supraorbital, inferior alveolar and mental nerves.

Frontal Sinus/ Bone Fractures Pathophysiology l Results from a direct blow to the frontal Frontal Sinus/ Bone Fractures Pathophysiology l Results from a direct blow to the frontal bone with blunt object. l Associated with: – Intracranial injuries – Injuries to the orbital roof – Dural tears

Frontal Sinus/ Bone Fractures Clinical Findings Disruption or crepitance orbital rim l Subcutaneous emphysema Frontal Sinus/ Bone Fractures Clinical Findings Disruption or crepitance orbital rim l Subcutaneous emphysema l Associated with a laceration l

Frontal Sinus/ Bone Fractures Diagnosis l Radiographs: – Facial views should include Waters, Caldwell Frontal Sinus/ Bone Fractures Diagnosis l Radiographs: – Facial views should include Waters, Caldwell and lateral projections. – Caldwell view best evaluates the anterior wall fractures.

Frontal Sinus/ Bone Fractures Diagnosis l CT Head with bone windows: – Frontal sinus Frontal Sinus/ Bone Fractures Diagnosis l CT Head with bone windows: – Frontal sinus fractures. – Orbital rim and nasoethmoidal fractures. – R/O brain injuries or intracranial bleeds.

Frontal Sinus/ Bone Fractures Treatment l Patients with depressed skull fractures or with posterior Frontal Sinus/ Bone Fractures Treatment l Patients with depressed skull fractures or with posterior wall involvement. – ENT or nuerosurgery consultation. – Admission. – IV antibiotics. – Tetanus. l Patients with isolated anterior wall fractures, nondisplaced fractures can be treated outpatient after consultation with neurosurgery.

Frontal Sinus/ Bone Fractures Complications l Associated with intracranial injuries: – Orbital roof fractures. Frontal Sinus/ Bone Fractures Complications l Associated with intracranial injuries: – Orbital roof fractures. – Dural tears. – Mucopyocoele. – Epidural empyema. – CSF leaks. – Meningitis.

Naso-Ethmoidal-Orbital Fractures that extend into the nose through the ethmoid bones. l Associated with Naso-Ethmoidal-Orbital Fractures that extend into the nose through the ethmoid bones. l Associated with lacrimal disruption and dural tears. l Suspect if there is trauma to the nose or medial orbit. l Patients complain of pain on eye movement. l

Naso-Ethmoidal-Orbital Fracture l Clinical findings: – Flattened nasal bridge or a saddle-shaped – – Naso-Ethmoidal-Orbital Fracture l Clinical findings: – Flattened nasal bridge or a saddle-shaped – – deformity of the nose. Widening of the nasal bridge (telecanthus) CSF rhinorrhea or epistaxis. Tenderness, crepitus, and mobility of the nasal complex. Intranasal palpation reveals movement of the medial canthus.

Naso-Ethmoidal-Orbital Fracture l Imaging studies: – Plain radiographs are insensitive. – CT of the Naso-Ethmoidal-Orbital Fracture l Imaging studies: – Plain radiographs are insensitive. – CT of the face with coronal cuts through the medial orbits. l Treatment: – Maxillofacial consultation. – ? Antibiotic

Nasal Fractures l Most common of all facial fractures. l Injuries may occur to Nasal Fractures l Most common of all facial fractures. l Injuries may occur to other surrounding bony structures. l 3 types: – Depressed – Laterally displaced – Nondisplaced

Nasal Fractures l Ask the patient: – “Have you ever broken your nose before? Nasal Fractures l Ask the patient: – “Have you ever broken your nose before? ” – “How does your nose look to you? ” – “Are you having trouble breathing? ”

Nasal Fractures l Clinical findings: – Nasal deformity – Edema and tenderness – Epistaxis Nasal Fractures l Clinical findings: – Nasal deformity – Edema and tenderness – Epistaxis – Crepitus and mobility

Nasal Fractures l Diagnosis: – History and physical exam. – Lateral or Waters view Nasal Fractures l Diagnosis: – History and physical exam. – Lateral or Waters view to confirm your diagnosis.

Nasal Fractures l Treatment: – Control epistaxis. – Drain septal hematomas. – Refer patients Nasal Fractures l Treatment: – Control epistaxis. – Drain septal hematomas. – Refer patients to ENT as outpatient.

Orbital Blowout Fractures l Blow out fractures are the most common. l Occur when Orbital Blowout Fractures l Blow out fractures are the most common. l Occur when the globe sustains a direct blunt force l 2 mechanisms of injury: – Blunt trauma to the globe – Direct blow to the infraorbital rim

Orbital Blowout Fractures Clinical Findings l l l Periorbital tenderness, swelling, ecchymosis. Enopthalmus or Orbital Blowout Fractures Clinical Findings l l l Periorbital tenderness, swelling, ecchymosis. Enopthalmus or sunken eyes. Impaired ocular motility. Infraorbital anesthesia. Step off deformity

Orbital Blowout Fractures Imaging studies l Radiographs: – Hanging tear drop sign – Open Orbital Blowout Fractures Imaging studies l Radiographs: – Hanging tear drop sign – Open bomb bay door – Air fluid levels – Orbital emphysema

Orbital Blowout Fractures Imaging studies l CT of orbits – Details the orbital fracture Orbital Blowout Fractures Imaging studies l CT of orbits – Details the orbital fracture – Excludes retrobulbar hemorrhage. l CT Head – R/o intracranial injuries

Orbital Blowout Fractures Treatment l Blow out fractures without eye injury do not require Orbital Blowout Fractures Treatment l Blow out fractures without eye injury do not require admission – – – l Maxillofacial and ophthalmology consultation Tetanus Decongestants for 3 days Prophylactic antibiotics Avoid valsalva or nose blowing Patients with serious eye injuries should be admitted to ophthalmology service for further care.

Zygoma Fractures l The zygoma has 2 major components: – Zygomatic arch – Zygomatic Zygoma Fractures l The zygoma has 2 major components: – Zygomatic arch – Zygomatic body l Blunt trauma most common cause. l Two types of fractures can occur: – Arch fracture (most common) – Tripod fracture (most serious)

Zygoma Arch Fractures l Can fracture 2 to 3 places along the arch – Zygoma Arch Fractures l Can fracture 2 to 3 places along the arch – Lateral to each end of the arch – Fracture in the middle of the arch l Patients usually present with pain on opening their mouth.

Zygoma Arch Fractures Clinical Findings Palpable bony defect over the arch l Depressed cheek Zygoma Arch Fractures Clinical Findings Palpable bony defect over the arch l Depressed cheek with tenderness l Pain in cheek and jaw movement l Limited mandibular movement l

Zygoma Arch Fractures Imaging Studies & Treatment l Radiographic imaging: – Submental view (bucket Zygoma Arch Fractures Imaging Studies & Treatment l Radiographic imaging: – Submental view (bucket handle view) l Treatment: – Consult maxillofacial surgeon – Ice and analgesia – Possible open elevation

Zygoma Tripod Fractures l Tripod fractures consist of fractures through: – Zygomatic arch – Zygoma Tripod Fractures l Tripod fractures consist of fractures through: – Zygomatic arch – Zygomaticofrontal suture – Inferior orbital rim and floor

Zygoma Tripod Fractures Clinical Features l Clinical features: – Periorbital edema and ecchymosis – Zygoma Tripod Fractures Clinical Features l Clinical features: – Periorbital edema and ecchymosis – Hypesthesia of the infraorbital nerve – Palpation may reveal step off – Concomitant globe injuries are common

Zygoma Tripod Fractures Imaging Studies l Radiographic imaging: – Waters, Submental and Caldwell views Zygoma Tripod Fractures Imaging Studies l Radiographic imaging: – Waters, Submental and Caldwell views l Coronal CT of the facial bones: – 3 -D reconstruction

Zygoma Tripod Fractures Treatment l Nondisplaced fractures without eye involvement – Ice and analgesics Zygoma Tripod Fractures Treatment l Nondisplaced fractures without eye involvement – Ice and analgesics – Delayed operative consideration 5 -7 days – Decongestants – Broad spectrum antibiotics – Tetanus l Displaced tripod fractures usually require admission for open reduction and internal fixation.

Maxillary Fractures l High energy injuries. l Impact 100 times the force of gravity Maxillary Fractures l High energy injuries. l Impact 100 times the force of gravity is required. l Patients often have significant multisystem trauma. l Classified as Le. Fort fractures.

Maxillary Fractures Le. Fort I l Definition: – Horizontal fracture of the maxilla at Maxillary Fractures Le. Fort I l Definition: – Horizontal fracture of the maxilla at the level of the nasal fossa. – Allows motion of the maxilla while the nasal bridge remains stable.

Maxillary Fractures Le. Fort I l Clinical findings: – Facial edema – Malocclusion of Maxillary Fractures Le. Fort I l Clinical findings: – Facial edema – Malocclusion of the teeth – Motion of the maxilla while the nasal bridge remains stable

Maxillary Fractures Le. Fort I l Radiographic findings: – Fracture line which involves l Maxillary Fractures Le. Fort I l Radiographic findings: – Fracture line which involves l l Nasal aperture Inferior maxilla Lateral wall of maxilla CT of the face and head – coronal cuts – 3 -D reconstruction

Maxillary Fractures Le. Fort II l Definition: – Pyramidal fracture l l l Maxilla Maxillary Fractures Le. Fort II l Definition: – Pyramidal fracture l l l Maxilla Nasal bones Medial aspect of the orbits

Maxillary Fractures Le. Fort II l Clinical findings: – Marked facial edema – Nasal Maxillary Fractures Le. Fort II l Clinical findings: – Marked facial edema – Nasal flattening – Traumatic telecanthus – Epistaxis or CSF rhinorrhea – Movement of the upper jaw and the nose.

Maxillary Fractures Le. Fort II l Radiographic imaging: – Fracture involves: l l l Maxillary Fractures Le. Fort II l Radiographic imaging: – Fracture involves: l l l Nasal bones Medial orbit Maxillary sinus Frontal process of the maxilla CT of the face and head

Maxillary Fractures Le. Fort III l Definition: – Fractures through: l l l Maxilla Maxillary Fractures Le. Fort III l Definition: – Fractures through: l l l Maxilla Zygoma Nasal bones Ethmoid bones Base of the skull

Maxillary Fractures Le. Fort III l Clinical findings: – Dish faced deformity – Epistaxis Maxillary Fractures Le. Fort III l Clinical findings: – Dish faced deformity – Epistaxis and CSF rhinorrhea – Motion of the maxilla, nasal bones and zygoma – Severe airway obstruction

Maxillary Fractures Le. Fort III l Radiographic imaging: – Fractures through: l l l Maxillary Fractures Le. Fort III l Radiographic imaging: – Fractures through: l l l Zygomaticfrontal suture Zygoma Medial orbital wall Nasal bone CT Face and the Head

Maxillary Fractures Treatment l Secure and airway l Control Bleeding l Head elevation 40 Maxillary Fractures Treatment l Secure and airway l Control Bleeding l Head elevation 40 -60 degrees l Consult with maxillofacial surgeon l Consider antibiotics l Admission

Mandible Fractures Pathophysiology Mandibular fractures are third most common facial fracture. l Assaults and Mandible Fractures Pathophysiology Mandibular fractures are third most common facial fracture. l Assaults and falls on the chin account for most of the injuries. l Multiple fractures are seen in greater then 50%. l Associated C-spine injuries – 0. 2 -6%. l

Mandible Fractures Clinical findings l l l Mandibular pain. Malocclusion of the teeth Separation Mandible Fractures Clinical findings l l l Mandibular pain. Malocclusion of the teeth Separation of teeth with intraoral bleeding Inability to fully open mouth. Preauricular pain with biting. Positive tongue blade test.

Mandible Fractures l Radiographs: – Panoramic view – Plain view: PA, Lateral and a Mandible Fractures l Radiographs: – Panoramic view – Plain view: PA, Lateral and a Townes view

Mandibular Fractures Treatment l Nondisplaced fractures: – Analgesics – Soft diet – oral surgery Mandibular Fractures Treatment l Nondisplaced fractures: – Analgesics – Soft diet – oral surgery referral in 1 -2 days l Displaced fractures, open fractures and fractures with associated dental trauma – Urgent oral surgery consultation l All fractures should be treated with antibiotics and tetanus prophylaxis.

Mandibular Dislocation l Causes of mandibular dislocation – Blunt trauma – Excessive mouth opening Mandibular Dislocation l Causes of mandibular dislocation – Blunt trauma – Excessive mouth opening are: l Risk factors: – Weakness of the temporal mandibular ligament – Over stretched joint capsule – Shallow articular eminence – Neurologic diseases

Mandibular Dislocation l The mandible can be dislocated: – Anterior 70% – Posterior – Mandibular Dislocation l The mandible can be dislocated: – Anterior 70% – Posterior – Lateral – Superior l Dislocations are mostly bilateral.

Mandibular Dislocation l Posterior dislocations: – Direct blow to the chin – Condylar head Mandibular Dislocation l Posterior dislocations: – Direct blow to the chin – Condylar head is pushed against the mastoid l Lateral dislocations: – Associated with a jaw fracture – Condylar head is forced laterally and superiorly l Superior dislocations: – Blow to a partially open mouth – Condylar head is force upward

Mandibular Dislocation l Clinical features: – Inability to close mouth – Pain – Facial Mandibular Dislocation l Clinical features: – Inability to close mouth – Pain – Facial swelling l Physical exam: – Palpable depression – Jaw will deviate away – Jaw displaced anterior

Mandibular Dislocation l Diagnosis: – History & Physical exam – X-rays – CT Mandibular Dislocation l Diagnosis: – History & Physical exam – X-rays – CT

Mandibular Dislocation l Treatment: – Muscle relaxant – Analgesic – Closed reduction in the Mandibular Dislocation l Treatment: – Muscle relaxant – Analgesic – Closed reduction in the emergency room

Mandibular Dislocation l Treatment: – Oral surgeon consultation: Open dislocations l Superior, posterior or Mandibular Dislocation l Treatment: – Oral surgeon consultation: Open dislocations l Superior, posterior or lateral dislocations l Non-reducible dislocations l Dislocations associated with fractures l

Mandibular Dislocation l Disposition: – Avoid excessive mouth opening – Soft diet – Analgesics Mandibular Dislocation l Disposition: – Avoid excessive mouth opening – Soft diet – Analgesics – Oral surgery follow up

THANK YOU FOR ATTENTION THANK YOU FOR ATTENTION