Скачать презентацию Evolució dels sistemes de diàleg Millorar el Скачать презентацию Evolució dels sistemes de diàleg Millorar el

2e55acf37aee9671842b64cf83d92ed6.ppt

  • Количество слайдов: 43

Evolució dels sistemes de diàleg • Millorar el procés de desenvolupament del sistema • Evolució dels sistemes de diàleg • Millorar el procés de desenvolupament del sistema • Millorar la funcionalitat – Utilizació en aplicacions més complexes – Expansió de la cobertura lingüística – Millora del controlador de diàleg • Utilització del model de tasques del sistema – Integració amb altres modes: multimodalitat

Millorar el procés de desenvolupament del sistema Evolució • Transportables a dominis diferents • Millorar el procés de desenvolupament del sistema Evolució • Transportables a dominis diferents • Sistemes i eines per desenvolupar mòduls comunicatius – INKA: Interfícies per construir Sistemes Experts • Utilitza un Llenguate Structurat d’Interfícies – NL-MENU: Interfícies per consultar bases de dades – NAT: Interfícies per diferents llenguatges i aplicacions

Evolució Utilizació en aplicacions més complexes Interfícies en LN per sistemes basats en el Evolució Utilizació en aplicacions més complexes Interfícies en LN per sistemes basats en el coneixement • El coneixement conceptual implicat és més complexe • Es necessiten noves functionalitats – Preguntes sobre l’aplicació • El coneixement lingüístic necessari és més gran Incorporació de la representació del domini

Evolució Expansió de la cobertura linguística Eficiència Cobertura Reusabilitat Basats en templetes orientats a Evolució Expansió de la cobertura linguística Eficiència Cobertura Reusabilitat Basats en templetes orientats a la tasca Bona Pobre Recursos generals adaptables a diferents aplicacions Bona Rica Recursos generals Pobre Rica Difícil Fàcil

Integració amb altres modes: multimodalitat • La integració de speech permet una comunicació més Integració amb altres modes: multimodalitat • La integració de speech permet una comunicació més amistosa i noves aplicacions –VOYAGER (MIT), Office Manager (CMU), MASK (Multimodal Multimedia Automated Service Kiosk), ATIS (MIT, CMU), Railtel, Sundial, Verbmobil • La integració amb menus, gràfics i gest millora la communicació en moltes aplicacions –MMI 2 (Multimodal Interface for Man Machine Interaction) –MATIS (Multimodal Airline Travel Information System) –COMET (Coordinated Multimedia Explanation Testbed), ALFresco, CUBRICON

The functionality of GISE: Generador de Interfaces para Sistemas Expertos • It supports NL The functionality of GISE: Generador de Interfaces para Sistemas Expertos • It supports NL communication with KBSs • It automatically adapts – General linguistic knowledge • Represented in a Linguistic Ontology – To application communication tasks • Represented in a Conceptual Ontology

Aim of the study GISE, a system for improving NL Interaction with Knowledge Based Aim of the study GISE, a system for improving NL Interaction with Knowledge Based Systems • Reducing the run-time requirements for processing user interventions • Guiding the user about the system capabilities • Reducing the cost of developing the grammar and lexicon • The GISE NLI uses: - An application-restricted grammar and lexicon - A menu-system • GISE automatically adapts - General linguistic knowledge to the application knowledge represented in a Conceptual Ontology

GISE The different types of knowledge involved in the generation process • Conceptual knowledge: GISE The different types of knowledge involved in the generation process • Conceptual knowledge: Conceptual Ontology – Application knowledge appearing in communication – Communication tasks: general and specific • Linguistic knowledge: Linguistic Ontology – Linguistic structures expressing the communication tasks • Control knowledge: Control Rules – Controlling the process of relating general linguistic knowledge to application knowledge

GISE Obtaining the applicationrestricted linguistic resources Step 1. Providing the application domain-specific knowledge Step GISE Obtaining the applicationrestricted linguistic resources Step 1. Providing the application domain-specific knowledge Step 2. Adapting the general communication tasks to cover application knowledge Step 3. Adapting general linguistic knowledge to express the application communication tasks

The functionality of GISE Obtaining the applicationrestricted linguistic resources Data Description Conceptual Ontology General The functionality of GISE Obtaining the applicationrestricted linguistic resources Data Description Conceptual Ontology General knowledge Application knowledge Linguistic Ontology General knowledge Application lexicon Control Description Control rules Dialogue system Application grammar Application lexicon

The architecture of GISE The Conceptual Ontology • There are 3 basic entities represented The architecture of GISE The Conceptual Ontology • There are 3 basic entities represented in 3 separated taxonomies – Concepts – Attributes • Describing the concepts • They are classified according to a syntacicosemantic taxonomy – Operations • The communication tasks consist of the expression of allowed operations over the CO concepts

Conceptual Ontology The syntactico-semantic taxonomy of attributes • Generalization of the relations between – Conceptual Ontology The syntactico-semantic taxonomy of attributes • Generalization of the relations between – Application knowledge in the Conceptual Ontology – Linguistic knowledge in the Linguistic Ontology • Each class is related to the linguistic structures expressing the consulting and filling of the attributes in the class

Conceptual Ontology The basic attribute taxonomy • participants : who_does who_object what_object • being: Conceptual Ontology The basic attribute taxonomy • participants : who_does who_object what_object • being: is • possession: has • descriptions and relationships between two or more objects : of • related processes: does

Conceptual Ontology TOP CONCEPT ATTRIBUTE TRANSPORT lex: (transporte) departure arrival departuretime arrivaltime price TRAIN Conceptual Ontology TOP CONCEPT ATTRIBUTE TRANSPORT lex: (transporte) departure arrival departuretime arrivaltime price TRAIN BUS OPERATION

Conceptual Ontology ATTRIBUTE OF OF_QUANTITY OF_TIME ARRIVALTIME lex: (llegar, . . . ) unit: Conceptual Ontology ATTRIBUTE OF OF_QUANTITY OF_TIME ARRIVALTIME lex: (llegar, . . . ) unit: h/m OF_COST DEPARTURETIME lex: (hora_salida, salir, . . ) unit: h/m PRICE lex: (precio, . . ) unit: Euro

Conceptual Ontology TOP CONCEPT ATTRIBUTE OF_TIME OF_COST OPERATION MINIMUM_ATTRIBUTE _VALUE_O concept attribute TRAIN lex: Conceptual Ontology TOP CONCEPT ATTRIBUTE OF_TIME OF_COST OPERATION MINIMUM_ATTRIBUTE _VALUE_O concept attribute TRAIN lex: (tren) departure arrival departuretime arrivaltime price Which first? Which is the cheapest ? Which train departures first? Which train arrives first? Which is the cheapest train?

Conceptual Ontology Operations • Operations are represented as CO objects – The attributes describing Conceptual Ontology Operations • Operations are represented as CO objects – The attributes describing these objects represent their parameters and their preconditions (the conditions that must hold for an operation to be executed) • They are classified as Simple or complex Constructive Creating a conceptual instance, filling attributes Consultative Consulting the value of an instance attribute

The architecture of GISE The Linguistic Knowledge • It is organized following the basic The architecture of GISE The Linguistic Knowledge • It is organized following the basic principles of the Nigel grammar A large systemic functional grammar of English It is based on Hallidays’s work It has been used with GUM to generate NL • It covers the Spanish communication with KBSs • It is represented as an ontology

The grammar and lexicon generated • Their size is not large -> Simple parsing The grammar and lexicon generated • Their size is not large -> Simple parsing – They cover only the domain communication tasks – They incorporate dynamic categories • They incorporate information from the Conceptual Ontology -> Simple semantic interpretation – In the lexical entries – In the features augmenting the categories – In the preconditions associated with the rules

Linguistic Ontology • Linguistic knowledge is organized in two dimensions: – Rank: The scale Linguistic Ontology • Linguistic knowledge is organized in two dimensions: – Rank: The scale of the grammatical structures represented • Clause • Group • Word – Metafunction: The type of meaning • Interpersonal: The type of interaction • Ideational: The propositional meaning and content • Textual: The information organization

The architecture of GISE The control rules • They control the process of adapting The architecture of GISE The control rules • They control the process of adapting the general linguistic knowledge to applications • They establish general relations between: Concepts and operations in the CO CO and LO objects • Their form is: conditions ----> actions • They are implemented in PRE (Production Rules Environment)

The control rules Adapting the general communication tasks to cover application knowledge for each The control rules Adapting the general communication tasks to cover application knowledge for each CONCEPT in ONTOLOGY do generate_CO_operations_ instance_modifying_concept (CONCEPT) generate_CO_operations_ instance_consulting_concept (CONCEPT) endfor

The control rules Adapting general linguistic knowledge to express the application communication tasks for The control rules Adapting general linguistic knowledge to express the application communication tasks for each OPERATION_INSTANCE in ONTOLOGY do generate_CLAUSE_instances (OPERATION_INSTANCE) for each ARGUMENT in OPERATION_INSTANCE do generate_GROUP/WORD_instances (OPERATION_INSTANCE , ARGUMENT) endfor

The control rules The basic set of rules • It controls the generation of The control rules The basic set of rules • It controls the generation of grammars and lexicons for each application • It contains 48 rules organized in 8 rulesets • It covers different types of interfaces Interfaces supporting descriptions Interfaces supporting consults and descriptions • It can be enlarged easily

The control rules A rule of the ruleset creating_instance (rule cio ruleset creating_instance priority The control rules A rule of the ruleset creating_instance (rule cio ruleset creating_instance priority 1 control forever (object ^con ? con ^pcc ? pcc) ---> (? crinno : = (create-name ‘criwno ? con) (? concrinno : = (create-object ? crinno ‘crinno)) (? oparg : = (add-slots ? crinno ‘((con ? con)(pcc ? pcc)))). . . )

The dialogue system Dialogue sytem Menu system Parser User Grammar Lexicon Dialogue Controller Communication The dialogue system Dialogue sytem Menu system Parser User Grammar Lexicon Dialogue Controller Communication Manager Conceptual Ontology Application

The grammar and lexicon • They are obtained from the LO objects • They The grammar and lexicon • They are obtained from the LO objects • They are represented in the definiteclause grammar (DCG) formalism because: – Definite-clause grammars are more expressive than conventional context-free grammars – They can be efficiently parsed – They are automatically generated

The lexicon A lexical entry representing the verb ser String es Category Interpretation verbser(syn(num(s), The lexicon A lexical entry representing the verb ser String es Category Interpretation verbser(syn(num(s), tense(p))) (((l, X), (l, Y)), (X, Y)) syntactic number singular tense present

The lexicon A lexical entry representing the concept ARCHITECT un_arquitecto • String • Category The lexicon A lexical entry representing the concept ARCHITECT un_arquitecto • String • Category indefngcon (syn(gen(m), num(s)), sem(con(architect))) syntactic gender masculine number singular • Semantic Interpretation semantic concept architect

The lexicon Dynamic entries Representing instances of concepts Category pngi(sem(con(person))) function instance_of(person) Representing values The lexicon Dynamic entries Representing instances of concepts Category pngi(sem(con(person))) function instance_of(person) Representing values of attributes requested to the user during communication Category defngattrof(sem(con(person), attr(name))) function name Representing all possible values of an attribute defngvalofcause(sem(con(requirementobuild), attr(reasonotbuilt))) menu(reasonotbuilt)

The lexicon Dynamic entries • The number of lexical entries to be considered is The lexicon Dynamic entries • The number of lexical entries to be considered is reduced • They allow the introduction of new values during communication • They guide the user to introduce specialized terms

The parser • It is based on the Ross version of the Left-corner algorithm The parser • It is based on the Ross version of the Left-corner algorithm • It assures there is always a correct choice to continue from a correct prefix (prefix correctness) • It can parse – A word and predicts the set of all possible next words

The Dialogue Controller (DC) • The DC completes and disambiguates the semantic interpretation of The Dialogue Controller (DC) • The DC completes and disambiguates the semantic interpretation of the user request – The result is a complete specification of an operation over the Conceptual Ontology • The DC controls the execution of the operation • The DC passes the resulting information to the interface

The Dialogue Controller • The DC completes and disambiguates the semantic interpretation of the The Dialogue Controller • The DC completes and disambiguates the semantic interpretation of the user request using: – History of dialogue • Concept and parameters of the previous operations – The Conceptual Ontology • The definition of the operation: mandatory arguments, default values, . . . • This process is simple when users build the requests using the NL options shown in the screen – Mistakes and misunderstandings are avoided

Applications of GISE SIREDOJ, an expert system in law • Previously its communicative tasks Applications of GISE SIREDOJ, an expert system in law • Previously its communicative tasks – were fully integrated with functional tasks – were based on a set of menus • Applying GISE improves the communication: – Complex concepts can be expressed in one sentence – User-initiative dialogues are allowed – The size of the linguistic resources is not big: 26 grammar rules and 112 lexical entries

Conclusions • Main contribution: – Proposing an organization of the knowledge involved in communication Conclusions • Main contribution: – Proposing an organization of the knowledge involved in communication that improves the obtaining of the linguistic resources most appropriate for each application

Conclusions Proposing a reusable organization • The Conceptual Ontology – It provides a general Conclusions Proposing a reusable organization • The Conceptual Ontology – It provides a general framework for representing application communication tasks – It includes a syntactic-semantic taxonomy of attributes • Capturing the relations between application communication tasks and their linguistic realization

Conclusions Proposing a reusable organization • The Linguistic Ontology – It is an adaptation Conclusions Proposing a reusable organization • The Linguistic Ontology – It is an adaptation of NIGEL grammar for communication with KBSs in Spanish • The Control Rules – They control the process of adapting linguistic knowledge to each application – A basic set of rules controls this process for different types of applications

Conclusions Improving the NL processing Using grammars and lexicon restricted to the application communication Conclusions Improving the NL processing Using grammars and lexicon restricted to the application communication tasks • Their size is not large: The parsing is simple – Dynamic categories are used – A menu-system is integrated in the NLI • They incorporate information from the Conceptual Ontology: The interpretation is simple • In the lexical entries • In the features augmenting the categories • In the preconditions associated with the rules

Conclusions Improving communication and user satisfaction • Using an easy and clear language – Conclusions Improving communication and user satisfaction • Using an easy and clear language – Guiding the user about application specific information • Using a menu-system to introduce NL – The user is guided about the system requirements – The user can avoid typing sentences • Tools helping the user are incorporated into the interface

GIWEB Interface User Grammar Lexicon Parser Conceptual Ontology Dialogue Controller Wrapper 1 Wrapper 2 GIWEB Interface User Grammar Lexicon Parser Conceptual Ontology Dialogue Controller Wrapper 1 Wrapper 2 Wrappern Internet Source 1 Source 2 Sourcen