277f20b440e8e8bdb6bd4b214318c651.ppt
- Количество слайдов: 23
Education and Research in the Center for Signal and Image Processing http: //www. eedsp. gatech. edu/
2 CSIP Summary • • Our Ph. D. graduates have impact worldwide in DSP education and research Distinguished faculty – – • • • 18 faculty (8 IEEE Fellows) Co-authors of over 25 books on DSP Over 80 current Ph. D. students Located on third floor of GCATT building 250 14 th St. , NW Support from Georgia Research Alliance has provided outstanding well equipped labs. Center for Signal and Image Processing
Beowulf Cluster 26 dual processors 1 Gbyte memories Center for Signal and Image Processing
CSIP Faculty • Yucel Altunbasak • Chin Lee • David V. Anderson • Vijay K. Madisetti • Thomas P. Barnwell • Francois Malassenet • Mark A. Clements • James H. Mc. Clellan • Faramarz Fekri • Russell M. Mersereau • Monson H. Hayes • Ronald W. Schafer • Joel R. Jackson • Douglas B. Williams • Fred Juang • G. Tong Zhou • Aaron Lanterman Center for Signal and Image Processing
Past and Present Funding • Industry: Texas Instruments, Intel, BAE Systems, Hewlett-Packard, Mathworks, National Semiconductor, Analog Devices, Lucent, Harris, Hughes, Prentice-Hall • Federal: NSF, U. S. Army, DARPA, ONR, NASA, MPO • State: Georgia Research Alliance • Private Foundation: John and Mary Franklin Foundation • Total Funding: Current funding from government and industry totals about $6. 5 M Center for Signal and Image Processing
Industrial Partnership Examples • Texas Instruments Leadership Univ. Program – Members with MIT and Rice U. – Seven projects - 7 faculty and 7 Ph. D. students – Wireless video, CFA interpolation, speech coding, speech recognition, chaotic systems, face recognition, MIMO communication systems • Hewlett Packard Laboratories – Four faculty and six students – Focus on PADs: low-power analog front-ends, structured audio, applications in education. Also, 3 D video for video conferencing, – HP Labs researcher in residence Center for Signal and Image Processing
Linearization of RF Power Amplifiers G. Tong Zhou, J. Stevenson Kenney • Power amplifiers (PAs) are inherently nonlinear. – Desire: high efficiency PAs, leading to low cost. – Downside of high efficiency: high nonlinearity. – Nonlinearity causes: (1) high bit error rate; (2) adjacent channel interference: must satisfy FCC. • DSP-based predistortion linearization. – Challenging issue: memory nonlinear effects in high power amplifiers (e. g. , base station PAs). • In collaboration with Lucent Technologies, we have developed a memory polynomial pre-distorter that does the job. Center for Signal and Image Processing
RF/DSP Testbed Center for Signal and Image Processing
Video Resolution Enhancement Y. Altunbasak and R. Mersereau • Future broadcasting will be all digital. • High definition displays will dominate the market. • However, most programming is expected to be in SDTV format. There is a clear need and technical opportunity to design systems to enhance the quality of the SDTV signal so that it matches the quality and capabilities of high definition displays. Center for Signal and Image Processing
Applications - Digital Cameras Subsequent multiple pictures (JPEG format) Reconstructed high-resolution picture Also applicable to high-quality printing from video sources such as DVD players, set-top boxes, TV sets, software MPEG players and camcorders. Requires a resolution enhancing print driver. Center for Signal and Image Processing
Face Recognition Monson H. Hayes Major problem is lighting and pose variations. Center for Signal and Image Processing
Results and Next Step • We have developed a new face recognition system based on a segmented linear subspace model – Robust to varying illuminations and tolerant to different poses, – Has recognition accuracy equaling or exceeding (>99%) other state-of-the-art systems, and – Has a fraction of the complexity. • Next Step: Face Recognition from Video – Face detection (patent awarded). – Pose detection (find best frontal view). – Face recognition (robust to varying illuminations, poses, facial expressions). • The Intriguing Question – How can we incorporate the multitude of images that are extracted from video to enhance the recognition system? Center for Signal and Image Processing
Finite Field Wavelet Transforms F. Fekri and D. Williams Goal: Establishment of a new research field that brings together researchers from signal processing, error control coding, data security and multicarrier signaling systems. Finite Field Wavelets Error Control Coding OFDM Modulation Security coding Center for Signal and Image Processing
New Research Directions in Data Security LL row-wise LH HL HH column-wise LL LH HL HH New Research Directions in Error Control Coding Center for Signal and Image Processing
Passive Radar Systems Aaron Lanterman Exploit “illuminators of opportunity” such as commercial TV and FM radio broadcasts for covert operation Target Tracking Positions Velocities Passive Radar System Signature Prediction via Computational EM Radar Cross Section Radar Imaging Target Classification Target Library Center for Signal and Image Processing
Imaging With 100. 0 on Your FM Dial Target Shape Formatted Raw Data Image Formed Via Processing F-22 Falcon-100 VFY-218 Center for Signal and Image Processing
Cooperative Analog/Digital Signal Processing D. Anderson and P. Hasler • Target: Complex signal processing functionality with extremely low power • Approach: Perform substantial amounts of the processing in programmable analog VLSI Real world (analog) DSP Processor A/D Convertor Computer (digital) Specialized A/D Real world (analog) ASP IC A/D DSP Processor Computer (digital) Center for Signal and Image Processing
Cooperative Analog/Digital Signal Processing • Advantages of CADSP: – Better problem “fit” – Orders of magnitude improvement in power consumption / efficiency – Simpler A/D converter requirements, – Smaller size. • Current Applications Include: – – – Audio noise suppression Audio source localization / beam-steering Focal plane image / video processing Speech Recognition Field Programmable Analog Processor Arrays Center for Signal and Image Processing
Image-Based Photo Hulls R. Schafer, G. Slabaugh, M. Hans Center for Signal and Image Processing
Image-Based Photo Hulls Sample points along the ray within the visual hull. Match colors across images. Stop when point projects to consistent colors. Stepping direction Reference view Consistent Inconsistent 2 fps on a 1. 4 GHz Pentium Desired view Reference view Center for Signal and Image Processing
Microelectrode-Guided Neurosurgery M. Clements and E. Price • Sponsor: NIH / Emory University • Objective: Improve treatment for Parkinson’s disease with 3 D brain mapping and digital signal processing Center for Signal and Image Processing
Digital Media Asset Management • Sam Nunn Archives: Cooperative Effort between CSIP, IMTC, GT and Emory Libraries. • Fast searching of audio based on phonetic content. Typical speed of search: 72, 000 x real time (20 hours of content searched in 1 elapsed second). Basis for startup company Fast-Talk which has received over $10 M venture funding. • New results demonstrate rapid searching of music by lyrics and melodies using same approach. Center for Signal and Image Processing
Summary • The premier academic program in the country in the signal processing field is in the Georgia Tech School of Electrical and Computer Engineering. • We have lots of outstanding graduate students. – Internships – Long-term contributors • We have lots of outstanding technology waiting to be developed. • We have a demonstrated capability to work with industry. • Contact me if you want to come for a visit. rws@ece. gatech. edu Center for Signal and Image Processing