Скачать презентацию DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN Скачать презентацию DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN

e617d167992e7c742f034f39c1af1ae9.ppt

  • Количество слайдов: 64

DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. 3 M Suran, M. D. , Ruder, H. , Popescu, N. A. , Nedelcu, A. , Pricopi, D. , Badescu, O. E-mail: [email protected] astro. ro

Ce exista in prezent in Romania ? Telescopes Aperture (m) Limiting magnitude (5 , Ce exista in prezent in Romania ? Telescopes Aperture (m) Limiting magnitude (5 , AB, 100 s) CCD 0. 5 (Bucuresti) 13 -14 (!!!) Bucuresti, Filaret CCD/2010 0. 1/HATNet (Hungary) (Chile, US, South Africa) 16 (0. 5)/Mitaka (Japon) 21 1. 3 m Romanian Limiting magnitude (5 , AB , 5 yr) CCD Number of objects Cost (M Euro) ~10 /yr Old (50 yr) <0. 5

STANDARDE DE TELESCOAPE • Standard national; • Standard regional (ex. Balcanic); • Standard international: STANDARDE DE TELESCOAPE • Standard national; • Standard regional (ex. Balcanic); • Standard international: – European (ESO); – American (US+Canada).

Prezentul Proiect TELESCOP DE 1. 3 M standard european actual (2010+) Istoria telescoapelor de Prezentul Proiect TELESCOP DE 1. 3 M standard european actual (2010+) Istoria telescoapelor de 1. 3 m dateaza inca din anii 1789 (telescopul lui W. Herschel). Punctul de plecare: Telescop ‘clasic’ secol XX: • actionat manual • plasat in ‘conditii normale’ (seeing ~1. 5) • care observa ‘obiecte individuale’: – la o magnitudine limita (5 , B, 100 s) ~ 20 -22 mag – plasat in Europa continentala. – avand un randament maxim de 10 -30 obiecte observabile/an Scopul final al proiectului TELEROM: • Maximizarea cantitativa si calitativa a datelor de observatie colectate cu un telescop de 1. 3 m, la nivelul anilor 2009+; Telescop comparativ si competitiv cel putin cu cele balcanice de 2 -2. 3 m ( cresterea vizibilitatii noastre astronomice in Balcani cel putin !) ( telescop mai mic pus in sit bun = telescop mare pus in sit prost!!!!!) Recuperarea ramanerii in urma observationale de peste 50 ani in domeniu ( ~108 obiecte/5 ani !)

TELESCOP ROBOTIC DE 1. 3 M DE CE? Istoria telescoapelor de 1. 3 m TELESCOP ROBOTIC DE 1. 3 M DE CE? Istoria telescoapelor de 1. 3 m dateaza inca din anii 1789 (telescop W. Herschel). Telescoape de 1. 3 m pot fi: • Telescoape de studiu de obiecte individuale si actionat manual – telescop care prezinta un randament foarte scazut: 10 -30 obiecte pe an – telescop al secolelor XVIII, XIX, XX. • Telescoape pentru studii de follow-up – adancirea studiilor de monitorizare efectuate deja cu telescoape (robotice/spatiale) de apertura A: – telescoape de la sol – necesar apertura: A< A’=1. 3 m – telescoape spatiale – necesar apertura: 2. 5 A< A’=1. 3 m>2. 5 A (MOST/Co. Ro. T) Randamentul acestor telescoape ramane la 10 -30 obiecte pe an. • Telescoape robotice de monitorizare si cautare de obiecte(open/closed loop) (2000+) Randamentul telescopului: ~108 -109 obiecte/5 -10 ani.

TELESCOP ROBOTIC DE 1. 3 M DE CE? (Wikipedia) • A robotic telescope is TELESCOP ROBOTIC DE 1. 3 M DE CE? (Wikipedia) • A robotic telescope is an astronomical telescope and detector system that makes observations without the intervention of a human. Most robotic telescopes are small telescopes, A < 1. 5 m. • Robotic telescopes are complex systems that typically incorporate a number of subsystems. These subsystems include devices that provide – telescope pointing capability, – operation of the detector (typically a CCD camera), – control of the dome or telescope enclosure, – control over the telescope's focuser, – detection of weather conditions, – and other capabilities. Frequently these varying subsystems are presided over by a master control system, which is almost always a software component. • Robotic telescopes operate under closed loop or open loop principles. – – In an open loop system, a robotic telescope system points itself and collects its data without inspecting the results of its operations to ensure it is operating properly. A closed loop system has the capability to evaluate its operations through redundant inputs to detect errors. A common such input would be position encoders on the telescope's axes of motion, or the capability of evaluating the system's images to ensure it was pointed at the correct field of view when they were exposed.

TELESCOP ROBOTIC DE CE? STATISTICA Wikipedia (robotic telescope list) TELESCOP ROBOTIC DE CE? STATISTICA Wikipedia (robotic telescope list)

Telescoape ‘internationale’ de 1. 2 m - 1. 5 m listate pe WIKIPEDIA Telescoape ‘internationale’ de 1. 2 m - 1. 5 m listate pe WIKIPEDIA

TELESCOP ROBOTIC DE 1. 3 M DE CE? STATISTICA Wikipedia (robotic telescope list) TELESCOP ROBOTIC DE 1. 3 M DE CE? STATISTICA Wikipedia (robotic telescope list)

TELESCOP DE 1. 3 M. DE CE? Exemple de telescoape moderne (1990+) de 1. TELESCOP DE 1. 3 M. DE CE? Exemple de telescoape moderne (1990+) de 1. 3 m (robotice/open loops, fara feedback) : • OGLE: telescop polonez in Chile (1992+), optic (BVI), ~400 milioane de stele monitorizate, 30 TB data , 2*1011 photometric measurements, ~1 milion stele variabile, 8 noi exoplanete, 4000 microlensing events; • 2 MASS: 2 telescoape identice US, Chile (1997 -2001), IR (J, H, K), ~300 milioane stele + 100 milioane galaxii monitorizate (mag. limita ~14); SMARTS: Yale telescope (2003+)/Chile, , optic (BVRI), PAIRITEL: SAO/US, robotic, transient type, equiv. SDSS (2. 5 m) (lim. mag. 22. 5, 5 , 500 s, R) § SKYMAPPER: telescop MSO/Siding Spring , robotic/closed loop, VERY WIDE FIELD, equiv. SDSS(2. 5 m), ~ 1 miliard de obiecte, 300 TB data, (lim. mag. 23, 5 , 100 s, g) ; § EULER (Geneva, La Silla/Chile), STELLAI, II (IAC), RCT (US/Kitt Peak), MERCATOR (Belgia/Canary Islands) NOI: incepem investitia (ANCS/Proiect POSCEE O 2. 1. 2 Nr. 651 ? ? ? ) ca un telescop de 1. 3 m normal, ca in final sa ajungem la UN STANDARD NOU ESO (2005+), imprumutat din standardul american al telescopului ‘inteligent’ RAPTOR (Los Alamos): Telescop inteligent = Telescop robotic/closed loop (cu feedback/autocontrol cu prioritati) autonom + remote control + wide field (0. 5 deg), telescop automat inteligent de tip multiplex + telescop 40 cm de cautare cu soft aditional de recunoastere de paternitati + alerta + autocontrol + + follow up inteligent (cu prioritati) tehnici de supercomputing timp de exploatare > 10 ani. Cel putin analog (ca performante) telescoapelor de 1. 3 m OGLE & 2 MASS & SKYMAPPER (? ) productivitate efectiva de lucru (ca telescop ROBOTIC INTELIGENT): > 105 -106 obiecte monitorizate/noapte!

TELESCOP DE 1. 3 M DE CE? 2 MASS telescope SMARTS (Cerro Tololo, Chile) TELESCOP DE 1. 3 M DE CE? 2 MASS telescope SMARTS (Cerro Tololo, Chile) SKYMAPPER telescope ( Australia) OGLE telescope ( Chile)

Telescop 1. 3 m – capabilitati de lucru –OGLE Polish telescope The Optical Gravitational Telescop 1. 3 m – capabilitati de lucru –OGLE Polish telescope The Optical Gravitational Lensing Experiment or OGLE is a Polish astronomical project based at Warsaw University that is chiefly concerned with discovering dark matter using the microlensing technique. Since the project began in 1992, it has discovered several extrasolar planets as a side benefit. The project is led by professor pl: Andrzej Udalski from Warsaw University, who is a co-author of the discovery of OGLE-2005 -BLG-390 Lb. The main targets of the experiment are the Magellanic Clouds and the Galactic Bulge, because of the large number of intervening stars that can be used for microlensing during a stellar transit. Most of the observations have been taken at the Las Campanas Observatory in Chile. Cooperating institutions include Princeton University and the Carnegie Institution. The project has been divided into three phases, OGLE-I (1992 -1995), OGLE-II (1996 -2000), and OGLE-III (2001 -2009). OGLE-I was the project pilot phase; for OGLE-II, a telescope was specially constructed in Poland shipped to Chile. OGLE-III was primarily devoted to detecting transiting planets; the two fields observed during this phase were in the direction of the Galactic Bulge and the constellation Carina. [1] Also, first planets using the microlensing technique were detected during that phase. In 2009, the fourth phase, OGLE-IV, starts using 32 -chip mosaic CCD camera. The main goal for that phase is to increase the number of planetary detections using microlensing. • The NEW OBJECTS in the OGLE-III SKY (NOOS) system is a real time detection system designed for detection of all kinds of objects that emerge from the deep Universe, i. e. from below our typical detection limit, and are found in the OGLE regularly monitored fields. These may be supernovae (SNe), gravitational microlensing of very faint objects, cataclysmic variables or anything else that brightens significantly. • Presently OGLE-III frequently observes 102 fields in the Galactic bulge (35 square degrees), 40 fields in the Small Magellanic Cloud (13 square degrees) and 116 fields in the Large Magellanic Cloud (38 square degrees). • • • About 400 millions stars were detected in this area. ~1 milion de stele variabile 4000 microlensing events, 8 exoplanete; Main OGLE research fields and results: – – – – • • Extrasolar Planets • • Gravitational Lensing & Microlensing • • Variable Stars • • Photometric Maps • • Astrometry • • Interstellar Extinction • • Other Latest Scientific Results • • • 09 -10 -08: Long-Period Variables in the Large Magellanic Cloud 09 -05 -13: Optical Depth to the LMC from OGLE-II Data 09 -03 -15: RR Lyrae Stars in the Large Magellanic Cloud 09 -01 -30: OGLE-III Photometric Maps of the SMC 08 -11 -23: Type II Cepheids and Anomalous Cepheids in the Large Magellanic Cloud 08 -08 -19: Classical Cepheids in the Large Magellanic Cloud 08 -08 -17: New OGLE Real Time Data System: (XROM) X-ray Sources Monitoring 08 -08 -17: New OGLE Real Time Data System: (RCOM) RCr. B Variable Stars Monitoring 08 -07 -25: Triple Mode and 1 O/3 O Double Mode Cepheids in the LMC 08 -07 -24: OGLE-III Photometric Maps of the LMC 08 -06 -02: A Low-Mass Planet with a Possible Sub-Stellar-Mass Host 08 -02 -14: Discovery of a Jupiter/Saturn Analog: OGLE-2006 -BLG-109 Lbc

Telescop 1. 3 m – capabilitati de lucru –OGLE Polish telescope OGLE III, program Telescop 1. 3 m – capabilitati de lucru –OGLE Polish telescope OGLE III, program de monitorizare robotica: • Galactic Bulge • LMC • SMC

Telescop 1. 3 m – capabilitati de lucru –OGLE Polish telescope OGLE III, program Telescop 1. 3 m – capabilitati de lucru –OGLE Polish telescope OGLE III, program de monitorizare robotica de stele pulsante de tip RR Lyrae in LMC si exemple de curbe de lumina obtinute.

Telescop 1. 3 m – capabilitati de lucru – SKYMAPPER Australia telescope • • Telescop 1. 3 m – capabilitati de lucru – SKYMAPPER Australia telescope • • 1. 35 m with a 5. 7 sq. degree FOV To reside at Siding Spring Observatory First light in Dec 2006 To conduct a multi colour/epoch Stromlo Southern Sky Survey § § § Five year Multicolor (6 filters) Multi-epoch (6 exposures/each filter) 2 steradians Limiting magitude g~23 Costs: • Telescope: 2. 0 M US$ • • Hardware: 7. 0 M US$ Software: 1. 5 M US$ • Operations: 0. 5 M US$/yr. (instrumentation /Very Wide Field Camera + CCD Array)

Why a Sky. Mapper? • There is no deep digital optical map of the Why a Sky. Mapper? • There is no deep digital optical map of the southern sky • no instrument is planned that can map the entire southern sky in multiple colours and epochs • Sky. Mapper will provide an automated large-scale imaging capability that is matched to Australian: – Science strengths; – Instrumentation (AAOmega, Gemini etc. ), and; – Conditions – poor seeing a benefit cover the sky faster!

The Stromlo Southern Sky Survey = S 4 • Major component of Sky. Mapper The Stromlo Southern Sky Survey = S 4 • Major component of Sky. Mapper telescope will be providing a survey of the southern sky – Multi-colour, multi-epoch of southerly 2 steradian – Star and Galaxy photometry (3% global accuracy) – Astrometry (better than 50 mas ) – Cadence: hours, days, months and years. – Five years to complete – Data supplied to the community without proprietary period as part of Virtual Observatory work • Complementary to SDSS but w. improvements!

Survey Science The survey science goals are broad but some of the areas where Survey Science The survey science goals are broad but some of the areas where I think Sky. Mapper stands to have largest impact are: • • What is the distribution of large Solar-System objects beyond Neptune? What is the history of the youngest stars in the Solar neighbourhood? How far does the dark matter halo of our galaxy extend and what is its shape? Gravity and metallicity for on order of 100 million stars the assembly and chemical enrichment history of the bulge, thin/thick disk and halo? Extremely metal poor stars. Undiscovered members of the local group accurate photometric calibration of galaxy redshift surveys: 2 d. F/6 d. F. bright z>6 QSOs probes of the ionization history of the Universe.

Sky. Mapper Filter Set Ex-atmosphere Sky. Mapper Filter Set Ex-atmosphere

Expected S 4 limits u vs g r i z 1 epoch (1. 3 Expected S 4 limits u vs g r i z 1 epoch (1. 3 m) 21. 9 21. 8 20. 9 20. 2 expt. time 55 35 25 25 15 6 epochs (1. 3 m) 22. 9 22. 8 21. 9 21. 2 22. 0 n/a 22. 2 21. 3 20. 5 Sloan Digital Sky Survey compariso (SDSS, 2. 5 m) 15

z – coverage SDSS (EDR) 2 d. FGRS Spectroscopic redshifts r’<18 for SDSS BJ<19. z – coverage SDSS (EDR) 2 d. FGRS Spectroscopic redshifts r’<18 for SDSS BJ<19. 5 ( r’<18. 5) for 2 d. FGRS Photometric redshifts SDSS to r’=20. 5 From SDSS EDR Csabai 2003 S 4 to provide: Spirals to z~0. 3 -0. 4 E 0 to z~0. 7

S 4 Data Products • Deliverables to the Outside User: – Data (epoch, RA, S 4 Data Products • Deliverables to the Outside User: – Data (epoch, RA, DEC, mags, galaxy shape info, …) to be available through a web-served interface which provides catalogs over a user defined area – Images to be available through a web-served interface which provides images over a user defined area (maximum size will be limited) • How Much Data: – 1 Billion Objects observed 36 times • Database is – Database is ~2 Terabytes (1 billion rows x 500 columns) – 6 epochs x 6 colours x 4000 268, 000 pixel images 150 Terabytes + 25 Terabytes of calibration images

Telescop 1. 3 m – capabilitati de lucru – stele variabile, populatii stelare, astronomie Telescop 1. 3 m – capabilitati de lucru – stele variabile, populatii stelare, astronomie extragalactica, LSS Binara stransa, 44 i Boo Populatii stelare din Zona centrala a Galaxiei Nucleul Galaxiei rezolvata optic (RTC) bulge+discul Galaxiei (~108 stele, 2 MASS/Chile) (~106 stele, 2 MASS/Chile) (~1010 stele, 2 MASS) Structura locala de super-roiuri de galaxii Structura filamentara la mare scara Supernova in M 66 (RTC) (2 MASS) a Universului (|d|< 300 Mpc, 2 MASS)

Telescop 1. 3 m – capabilitati de lucru - cosmologie Magellanic Clouds Gamma Ray Telescop 1. 3 m – capabilitati de lucru - cosmologie Magellanic Clouds Gamma Ray Burst (z~5, RTC) ‘Volumul de Univers’ accesibil din punct de vedere cosmologic pentru un telescop de 1. 3 m

NOI: TELESCOP ROBOTIC INTELIGENT DE 1. 3 M DE CE? Posibil RAPTOR/THINKING • • NOI: TELESCOP ROBOTIC INTELIGENT DE 1. 3 M DE CE? Posibil RAPTOR/THINKING • • In 2002, the RAPid Telescopes for Optical Response (RAPTOR) project pushed the envelope of automated robotic astronomy by becoming the first fully autonomous closed–loop robotic telescope. Now RAPTOR has been re-tuned to be the key hardware element of the Thinking Telescopes Technologies Project: The Thinking Telescope is a concept designed to enhance analysis and observation of huge sections of the night sky and to be able to extract useful information in a timely fashion.

Prezentul Proiect TELESCOP DE 1. 3 M - TELEROM STANDATD European/ESO = Standard CE Prezentul Proiect TELESCOP DE 1. 3 M - TELEROM STANDATD European/ESO = Standard CE (ISO) = ASTELCO (Germania), 1. 1 M Euros (cu TVA)

Prezentul Proiect TELESCOP DE 1. 3 M - TELEROM STANDATD European/ESO = Standard CE Prezentul Proiect TELESCOP DE 1. 3 M - TELEROM STANDATD European/ESO = Standard CE (ISO) Calitatea proiectului data de: • Gradul de modernitate (calitatea tehnologica telescop+instrumente) – – – • Gradul de performanta (calitate observationala telescop+instrumente. +site) – • robotic/closed loop (autocontrol/autonom), remote control ( personal minimal de intretinere). 2 focare Nasmyth FOV ~0. 5 deg Fotometric (UBVRIz. Y/ubvb 1 b 2 v 1 z. Y, 3000 -10000 A), echelle spectrograf, Standard CE (ISO): • calitate oglinda: indice Strehl >0. 8, • calitate instrumentatie: instrumentatie doar de first light (!) – Camera CCD 4 k x 4 k – Rezolutie spectrala < 20. 000 calitati observationale sit ales: • Seeing (? ) • Poluare luminoasa (rural sky Bortle, mag. vis. >7) • Semnal/zgomot semificativ: S/N >>1 (S>5 ) • Magnitudinea limita (100 s, 5 , B) ~ 22 • Cer fotometric: (t) <0. 02 m. Gradul de competitivitate (randament, grad de noutate + calitate stiintifica) – Randament • Un numar cat mai mare de nopti senine (? ) • Numar maxim de obiecte (stele, galaxii) de observat la magnitudini 15 -22, • In zone compacte de cer (Bulge-Centrul /Anticentrul Galaxiei, Poli galactici. S/N, Ecliptica), • Numar de obiecte observate comparabil cu alte telescoape de apertura asemanatoare (apertura 1. 3 m: OGLE, 2 MASS) ~ 108 -109.

DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. 3 M - standard ESO/UE GRAD DE NOUTATE + CALITATE STIINTIFICA • Program de lucru: – Fotometrie (UBVRIz. Y) (extensibil la very narrow field/50 sq. sec. /SONG or/and very large field/1. 5 sq. deg !) – Spectroscopie (echelle spectrograph): – Astrometrie: • Metode de lucru: – Telescop inteligent: • Monitorizare + studiu efectiv; • Follow up inteligent (close loop /autocontrol cu prioritati) • Directii de cercetare: Sistem Solar: – (|d|<1 pc): Patrulare, supraveghere permanenta si alerta obiecte din Sistemul Solar (comete, asteroizi, NEO) Stele din Galaxie: – (|d|<2 kpc): Studiul populatiilor stelare din Galaxie – bulge, anticentru, brate spirale; – singulare, multiple, roiuri – pre. MS, HB, TOB, RGB, post-RGB, obiecte colapsate; – cautarea de sisteme exoplanetare (SONG/transite, microlensing); Astronomie extragalactica si Cosmologie: – (|d|<1 Mpc): Investigarea populatiilor stelare din galaxiile apropiate din Grupul Local – (|d|<300 Mpc): Studiul structurii la mare scara a Universului apropiat Filamente, voiduri, BAO, weak & strong lensing, SN; – (z<7): Studiul obiectelor active si exotice din Universul indepartat: SN, AGN, QSO, GRB.

DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. 3 M - PROIECT ANCS, 6 M lei - Costuri: lei % • • Active corporale (telescop+instrumente) 4. 950. 000 82. 50% Active necorporale 19. 680 0. 32% Servicii 257. 500 4. 29% Achizitie teren 78. 750 1. 31% Regie 24. 985 0. 41% Cheltuieli de personal 129. 210 2. 15% Publicitate 7. 875 0. 01% Management proiect 530. 000 8. 83% – Factor de risc 425. 000 7. 08% – Deplasari 105. 000 1. 75% • Audit 2. 000 0. 003% --------------------------------------------Total 6. 000 100. 00% • • telescop (+VAT) alte cheltuieli – Factor de risc (fond de rulment) – Sit + sit development + active necorporale – Restul management (deplasari)+ manopera+regie+… Factor de risc + Sit + sit development + active necorporale Sit + sit development 82. 5% (4. 95 M Lei ) (4. 5 r. s. v. ) 17. 5% (~1. 00 M Lei) ~7. 08% ~5. 92% ~4. 50% 13. 00% (~0. 78 M Lei) 5. 60% (~0. 33 M Lei)

 • DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC • DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. 3 M - concluzie Program de lucru telescop: Telescop robotic/closed loop (cu feedback/autocontrol) + remote control + wide field (0. 5 deg) telescop automat inteligent de tip multiplex, timp de exploatare > 10 ani. FOV 0. 5 sq. deg, mag. limita (100 s, 5 , B)~22 m, 7 filtre (UBVRIz. Y), 300 nopti/an, 10 ore/noapte, 10 ani utilizare: 100 s/fields/filter/noapte, 700 s/(field*filter)/noapte, x 50 nopti/an 1. 4 h/filter/50 nopti/an, ~10 h/50 nopti/an sumat: 7 h/filter/(50 nopti/an*5 ani), ~50 h/(50 nopti/an*5 ani) 50 zone/noapte x 50 nopti/an/zona 50 x 6 zone/an 300 zone/an x acoperire FOV 0. 4 sq. deg 120 sq. deg. Altii: OGLE/Polonia: Galactic Bulge LMC SMC OGLE II (BVI) (CCD) (mag. lim. 14) 11 sq. deg 5 sq. deg 3 sq. deg OGLE III (VI) (cu array CCD) (mag. lim. 18) 100 sq. deg (~50 milioane stele) 50 sq. deg (~ 35 milioane stele) 18 sq. deg (~ 6 milioane stele).

DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. 3 M - LUCRARI IN SIT – telescoape 2 MASS, OGLE

Conclusions Aperture (m) Limiting magnitude (5 , AB, 100 s) CCD Limiting magnitude (5 Conclusions Aperture (m) Limiting magnitude (5 , AB, 100 s) CCD Limiting magnitude (5 , AB , 5 yr) CCD 0. 5 (Bucuresti) 13 -14 (!!!) Bucuresti, Filaret CCD/2010 0. 1/HATNet (Hungary) (Chile, US, South Africa) 16 (0. 5)/Mitaka (Japon) 21 1. 3 (Romanian) Standard EU/Germany 22 23 2. 5 m 23 24 • SDSS: 22 (US) Number of objects Cost (M Euro) ~10 /yr ~500 /5 yr Old (50 yr) <0. 5 • OGLE clasic: 0. 1 M/3 yr • OGLE: ~400 M/5 yr • 2 MASS: ~500 M /5 yr(IR) • SKYMAPPER: ~1 B/5 yr • Noi: 0. 1 -1000 M 2 D: 20, 000 sq. deg. 3 D: 300 Myr 1. 5 • SDSS: ~1 B/10 yr 10

Alegerea sitului telescopului Alegerea sitului telescopului

STANDARDE EUROPENE SIT = ‘OBSERVATOARE EUROPENE’ STANDARD EUROPEAN (Telescop+Instr. +Site) STANDARD SIT ESO (Chile) STANDARDE EUROPENE SIT = ‘OBSERVATOARE EUROPENE’ STANDARD EUROPEAN (Telescop+Instr. +Site) STANDARD SIT ESO (Chile) + ENO (Canare): [Lege: La Oficina Técnica para la Protección de la Calidad del Cielo (OTPC) fue creada en enero de 1992 por el IAC para facilitar la aplicación de la Ley del Cielo (Ley 31/1988, artículo 3. 1 de la ITC-EA-04 del RD 1890/2008)] Standardele lor de sit = Meteo + Seeing + Poluare NOI, in Proiect, avem de studiat: - 1 sit Chile; - 1 sit Canare; - 3 situri din tara.

STANDARD ESO SITE Situl va fi ales METEO functie de: • Cer cat mai STANDARD ESO SITE Situl va fi ales METEO functie de: • Cer cat mai intunecat posibil in timpul noptii (poluare luminoasa 0, cer cel putin de tip ‘Rural Sky’pe scara Bortle, avand o magnitudini limita cu ochiul liber > 7. 0); • Acoperire minima cu nori in timpul noptii (>180 nopti/an si avand standard fotometric ridicat); • Turbulenta optica scazuta in cursul noptii (seeing natural bun - cat mai mic posibil, <1 -1. 5 arcsec) • Altitudine cat mai ridicata a locului de amplasare (de preferinta desupra stratului de inversiune atmosferica, altitudine, >2000 -2200 m). • Cantitate cat mai mica de vapori de apa (regim de umiditate de functionare a telescopului [5%; 95%], si pentru asigurarea observatiilor optime in regim IR, zone aride); • Variatii mici ale umiditatii in timpul noptii; • Temperatura medie anuala moderata in timpul noptii (regim de temperature de functionare a telescopului [-20 C: +35 C]); • Variatii mici de temperature in timpul noptii; • Presiune atmosferica ridicata in timpul noptii (cer senin noaptea); • Viteza scazuta a vantului in timpul noptii (<12 m/s); • Poluare scazuta de praf (timp de viata al stratului protector al oglinzii > 1 an); • Nivel scazut de radiatii electromagnetice noaptea (sa nu existe inteferente cu sistemul remote control + robotic al telescopului) ; • Seismicitate scazuta (pentru protejarea telescopului in montura sa si de pastrare a directiei sale principale de orientare - meridianul locului). • Accesibilitate buna in sit (drum practicabil si suficient de larg pentru transportul in bune conditii a oglinzii principale a telescopului de 1. 3 m); • Existenta facilitatilor de curent electric (pentru antrenarea mecanica a miscarilor Alt/Az/Rot ale telescopului) si Internet (pentru asigurarea regimului de lucru robotic+remote control al telescopului), apa si de securitate/paza aferente cladirilor din situl telescopului.

STANDARD ESO SITE Componente seeing: • • Seeing atmosferic; Seeing sit (cladiri adiacente); Turbulenta STANDARD ESO SITE Componente seeing: • • Seeing atmosferic; Seeing sit (cladiri adiacente); Turbulenta sol; Seeing local – Seeing dom; – Seeing optical tube telescope. Componente poluare: • • Contaminare luminoasa; Contaminare atmosferica; Contaminare radioelectrica; Rute aeriene.

STANDARD ESO SITE Poluare luminoasa STANDARD ESO SITE Poluare luminoasa

STANDARD ESO SITE 1. Site Quality ESO (Cerro Armazones, Chile) Observing conditions at the STANDARD ESO SITE 1. Site Quality ESO (Cerro Armazones, Chile) Observing conditions at the observatory: • Weather - ~ 90% of nights are clear (~330). • Seeing - median seeing at the WHT is 0. 62 arcsec • Posibil amplasament E-ELT (42 m) ? San Pedro de Atacama (aceleasi conditii meteo, la 2400 m).

STANDARD ESO SITE STANDARD ESO SITE

STANDARD ESO SITE STANDARD ESO SITE

STANDARD ESO SITE STANDARD ESO SITE

STANDARD ESO SITE (Cerro Armazones) STANDARD ESO SITE (Cerro Armazones)

STANDARD ESO SITE Calea Lactee si telescopul Hexapod (Cerro Armazones, 3040 m) STANDARD ESO SITE Calea Lactee si telescopul Hexapod (Cerro Armazones, 3040 m)

Constelatia Orion, nebuloasa din Orion, si lumina zodiacala la orizont (San Pedro de Atacama, Constelatia Orion, nebuloasa din Orion, si lumina zodiacala la orizont (San Pedro de Atacama, in zona bisercii, 2400 m)

STANDARD ESO SITE 2. Site Quality ESO (IAC, La Palma, Canary) The four sections STANDARD ESO SITE 2. Site Quality ESO (IAC, La Palma, Canary) The four sections below summarise information about observing conditions at the observatory: • • Weather - ~ 75% of nights are clear (~270). Seeing - median seeing at the WHT is 0. 7 arcsec Extinction - typically 0. 12 mag in V, higher in summer Sky brightness - 22. 7, 21. 9 and 21. 0 mag/arcsec 2 in B, V and R in the darkest conditions

STANDARD ESO SITE 2. Instituto de Astrofísica (IAC) The Instituto de Astrofísica, the administrative STANDARD ESO SITE 2. Instituto de Astrofísica (IAC) The Instituto de Astrofísica, the administrative and research center of IAC, is located in the town of San Cristóbal de La Laguna on the island of Tenerife. Observatorio del Roque de Los Muchachos The Observatorio del Roque de Los Muchachos is located in the Garafía municipality on the island of La Palma, at the edge of the Parque Nacional de la Caldera de Taburiente. The Observatory is at an altitude of 2, 400 m. It was inaugurated in 1985, and is the largest concentration of telescopes in the northern hemisphere. [Observatorio del Teide The Observatorio del Teide is located in the Izaña region, on the island of Tenerife at an altitude of 2, 400 m. It was founded in 1959 by the University of La Laguna. The two observatories, together with the Instituto de Astrofísica, constitute the European Northern Observatory. NOT telesclope (2. 5 m) – Roque de Los Muchachos, La Palma, 2400 m

STANDARD ESO SITE 2. The Sky of the Canary Islands • The Canary Islands STANDARD ESO SITE 2. The Sky of the Canary Islands • The Canary Islands are a preferred place for astronomical observation due to their climate and the transparency of the sky. Because of their high altitude (2400 m above sea level), the observatories are above the cloud bank and enjoy a clear atmosphere with little turbulence, both conditions favorable for sky observation. The favorable climate conditions allow astronomical research to be done throughout most of the year. Preserving the Sky • To maintain the preferred conditions for observation, the Law on the Protection of the Atmospheric Quality of the IAC Observatories was enacted in 1988. This law, which affects the islands of Tenerife and La Palma, identifies and attempts to prevent four distinct types of sky contamination: light pollution, radioelectric pollution, atmospheric contamination, and air traffic pollution near the observatories. To reduce these types of sky contamination, the act requires that: – Illumination is reduced after midnight. – Radio stations are regulated so as not to interfere with the observatories. – Industry or other activities that could contaminate the air are prohibited above 1500 m in altitude. – Air routes above La Palma and Tenerife are regulated. – The IAC established the Sky Quality Protection Technical Office to enforce these regulations.

STANDARD ESO SITE 2. Members of the IAC • Belgium • Denmark • France STANDARD ESO SITE 2. Members of the IAC • Belgium • Denmark • France • Germany • Italy • Norway • Spain • Sweden • United Kingdom Other Participating Countries • Armenia • Finland • Ireland • Netherlands • Poland • Portugal • Russia • Taiwan • Ukraine • United Stats

Situri balcanice ‘nationale’: • Tubitak (Turcia) – 2500 m, telescop 1. 5 m • Situri balcanice ‘nationale’: • Tubitak (Turcia) – 2500 m, telescop 1. 5 m • Helmos (Grecia) - 2300 m, telescop 2. 3 m • Rozhen (Bulgaria)- 1760 m, telescop 2. 0 m

SIT ROMANIA 3. – Transfagarasan 1800 – 2200 m SIT ROMANIA 3. – Transfagarasan 1800 – 2200 m

SIT ROMANIA 3. – Transfagarasan 1800 – 2200 m SIT ROMANIA 3. – Transfagarasan 1800 – 2200 m

SIT ROMANIA 3. – Costila, Bucegi, 2495 m Vale Prahovei si orasul Ploiesti vazute SIT ROMANIA 3. – Costila, Bucegi, 2495 m Vale Prahovei si orasul Ploiesti vazute noaptea de la Costila

SIT ROMANIA 3. – Varful Penteleu, 1777 m SIT ROMANIA 3. – Varful Penteleu, 1777 m

SIT ROMANIA 3. – Dealul Feleacu, 750 m Orasul Cluj-Napoca vazut de pe dealul SIT ROMANIA 3. – Dealul Feleacu, 750 m Orasul Cluj-Napoca vazut de pe dealul Feleacului (noaptea si ziua), ~750 m

SIT ROMANIA 3. – Muntii Macinului (~400 m) si Padurea Macin SIT ROMANIA 3. – Muntii Macinului (~400 m) si Padurea Macin

SIT ROMANIA 3. – Videle/Draganest-Vlasca SIT ROMANIA 3. – Videle/Draganest-Vlasca

STANDARD ESO SITE Place Seeing Nights clear Altitude Latitude ESO, Cerro Armazones (Chile) ~0. STANDARD ESO SITE Place Seeing Nights clear Altitude Latitude ESO, Cerro Armazones (Chile) ~0. 6 arcsec 320 3000 m -24 d 25 m ESO, San Pedro de Atacama (Chile) 1. 0 arcsec 320 2400 m -22 d 55 m ESO, La Palma (Canary) ~0. 7 arcsec 270 2500 m +28 d 46 m Aristarch telescope Helmos (Grecia) 2. 3 m ~0. 7 arcsec 150 2340 m +37 d 59 m Rozhen (Bulgaria), 2 m ~1. 5 arcsec 127 1760 m +41 d 41 m Tubitak (Turcia) 1. 5 m 0. 8 arcsec ~150 2500 m +36 d 49 m Cluj-Napoca (Romania) >2 arcsec + poluare lumnioasa <100 750 m +46 d 46 m Transfagarasan ~1 -1. 5 arcsec (? ) <100 (? ) 1700 -2200 m +45 d 26 d Balcani:

STANDARD ESO SITE DE CE? Telescop comparativ si competitiv cel putin cu cele balcanice STANDARD ESO SITE DE CE? Telescop comparativ si competitiv cel putin cu cele balcanice de 2 -2. 3 m telescop mai mic pus in sit bun – telescop mare pus in sit prost!!!!! Trebuie sa castigam o magnitudine si nu sa pierdem o magnitudine • • • Telescoape 2. 0 m/1. 3 m ~ 1 mag castig (ca diferente de magnitudini limita) Imbunatatirea posibila a magnitudinii limita a unui telescop: – Prin calitatea oglinzii (indice Strehl) – Prin calitatea cerului (seeing) S/N >>1 (pentru obiecte variabile de magnitudine ~18 -20) 1 m 1. 5 m 2 m

STANDARD ESO SITE DE CE? Trebuie sa castigam o magnitudine si nu sa pierdem STANDARD ESO SITE DE CE? Trebuie sa castigam o magnitudine si nu sa pierdem o magnitudine: Putem castiga +1, +1. 5 mag din calitatea seeingului amplasand in sit ESO/in raport cu Europa continent! telescop asemanator ca performanta optica (magnitudine limita) cu cel de la Rozhen: 24 22 mag! amplasat in Romania – telescopul pierde o magnitudine fata de unul amplasat in sit ESO - devine echivalentul unui telescop de ~0. 8 m pus in Chile< 20 mag Castigam din nou +0. 5 mag in magnitudine limita din calitatea (ESO) a oglinzii Indicele Strehl a telescopului nostru >0. 8. Indicele Strehl telescop 2. 3 m Aristarchos (Grecia) < 0. 6

STANDARD ESO SITE DE CE? Productivitatea telescopului: A. Nopti senine: • - Chile (Atacama/Antofagasta) STANDARD ESO SITE DE CE? Productivitatea telescopului: A. Nopti senine: • - Chile (Atacama/Antofagasta) 90 -93% • - Bulgaria (Rozhen) 35 -45% • - Romania 25 -35% randament observational (ca numar de nopti senine) de trei ori mare in Chile decat in Romania!

STANDARD ESO SITE DE CE? Productivitatea telescopului (alegerea emisferei): B. Numar posibil de obiecte STANDARD ESO SITE DE CE? Productivitatea telescopului (alegerea emisferei): B. Numar posibil de obiecte de observat: Chile (-23 deg S) Centrul Galaxiei -28 deg (la azimut, masa aer ~0) Anticentrul Galaxiei +22 deg Polul Galactic Sud -27 deg (la azimut, masa aer ~0) Polul Galactic Nord +27 deg Ecliptica (la azimut, masa aer ~0) Galaxii apropiate rezolvabile in stele - grupul MW (-69, -72 deg, LMC, SMC, Fornax) Romania (45 -47 deg N) Polul Galactic Nord +27 deg (la ~20 deg, masa aer mare) =Balcani (37 -47 deg N) Anticentrul Galaxiei +22 deg (la ~20 deg, masa aer mare) Ecliptica (la ~20 -40 deg, masa aer mare) productivitatea (ca numar posibil de obiecte de observat) de ~107 ori mare in Chile decat in Romania/Balcani (populatii stelare in alte galaxii)

STANDARD ESO SITE DE CE? Productivitatea telescopului: C. Cantitatea de vapori de apa: de STANDARD ESO SITE DE CE? Productivitatea telescopului: C. Cantitatea de vapori de apa: de peste 10 ori mai mica in Chile (desertul Atacama) decat in Romania sistem de fitre extins pana in zona limita IR: UBVRIz. Y aplicatii in astronomia extragalactica si cosmologie.

STANDARD ESO SITE DE CE NU (SI) BALCANIC? Amplasare telescop: Zona balcanica superpopulata in STANDARD ESO SITE DE CE NU (SI) BALCANIC? Amplasare telescop: Zona balcanica superpopulata in telescoape 1 m-2. 3 m • Grecia 4 telescoape, • Turcia 2 telescoape, • Bulgaria 1 telescop, • Ungaria 1 telescop • Serbia 1 telescop Romania ar avea doar al 10 -lea telescop de acelasi tip/performanta in zona! Telescopul romanesc se poate amplasa complementar in zona sudica, in ceea ce priveste colaborarea balcanica!

DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. DEZVOLTAREA LA STANDARDE EUROPENE A ASTRONOMIEI ROMANESTI PRIN INSTALAREA UNUI TELESCOP ROBOTIC DE 1. 3 M - concluzie • Amplasarea intr-un sit corect astroclimatic (standard ESO): • Castigam in magnitudine limita 22 -23 mag • Castigam in numar de nopti senine 90 -70% • Castigam in numar de obiecte observate 107 -108 • Extindem sistemul fotometric pana in zona IR z. Y. • Telescop robotic inteligent (standard US soft, UE hard): • Castigam in posibilitatile de lucru de tip automat si remote control + multiplex >107 obiecte/noapte.